cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376362 The number of unitary divisors that are squares of primes applied to the powerful numbers.

This page as a plain text file.
%I A376362 #13 Mar 25 2025 20:08:38
%S A376362 0,1,0,1,0,1,0,0,2,1,0,1,0,2,1,1,0,0,1,1,2,1,0,2,0,0,1,1,1,0,1,1,1,0,
%T A376362 2,2,1,0,1,1,0,0,1,2,0,1,1,1,0,3,1,1,1,0,0,2,1,1,2,2,0,1,0,1,1,1,2,2,
%U A376362 1,1,1,0,3,2,1,1,0,0,1,0,2,0,0,1,1,1,0,1,0,2,2,1,0,1,1,1,2,1,0,1,1,2,1,2,0
%N A376362 The number of unitary divisors that are squares of primes applied to the powerful numbers.
%H A376362 Amiram Eldar, <a href="/A376362/b376362.txt">Table of n, a(n) for n = 1..10000</a>
%H A376362 Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, <a href="https://doi.org/10.1016/j.jnt.2024.08.007">On the number of prime factors with a given multiplicity over h-free and h-full numbers</a>, Journal of Number Theory, Vol. 267 (2025), pp. 176-201; <a href="https://arxiv.org/abs/2409.11275">arXiv preprint</a>, arXiv:2409.11275 [math.NT], 2024. See Theorem 1.3.
%H A376362 <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.
%F A376362 a(n) = A369427(A001694(n)).
%F A376362 Sum_{A001694(k) <= x} a(k) = c * sqrt(x) * (log(log(x)) + B - log(2) - L(2, 4)) + O(sqrt(x)/log(x)), where c = zeta(3/2)/zeta(3) (A090699), B is Mertens's constant (A077761), L(h, r) = Sum_{p prime} 1/(p^(r/h - 1) * (p - p^(1 - 1/h) + 1)), and L(2, 4) = 0.57937575954505652569... (Das et al., 2025).
%t A376362 f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # > 1 &], Count[e, 2], Nothing]]; Array[f, 3500]
%o A376362 (PARI) lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] == 1, is = 0; break)); if(is, print1(#select(x -> x == 2, e), ", ")));}
%Y A376362 Cf. A001694, A077761, A090699, A369427, A376361, A376364, A376366.
%K A376362 nonn,easy
%O A376362 1,9
%A A376362 _Amiram Eldar_, Sep 21 2024