cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376363 The number of distinct prime factors of the cubefull numbers.

This page as a plain text file.
%I A376363 #13 Mar 25 2025 01:27:44
%S A376363 0,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,2,1,2,2,1,2,1,2,2,2,1,1,1,1,2,2,1,2,
%T A376363 2,2,2,1,1,2,2,2,2,1,1,2,2,2,1,2,2,2,2,2,2,2,1,2,1,2,1,2,1,1,2,2,2,2,
%U A376363 1,2,2,2,2,2,1,2,3,2,2,1,1,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,3,2,2,1,2
%N A376363 The number of distinct prime factors of the cubefull numbers.
%H A376363 Amiram Eldar, <a href="/A376363/b376363.txt">Table of n, a(n) for n = 1..10000</a>
%H A376363 Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, <a href="https://arxiv.org/abs/2409.10430">Distribution of omega(n) over h-free and h-full numbers</a>, arXiv:2409.10430 [math.NT], 2024. See Theorem 1.2.
%H A376363 <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.
%F A376363 a(n) = A001221(A036966(n)).
%F A376363 Sum_{A036966(k) <= x} a(k) = c * x^(1/3) * (log(log(x)) + B - log(3) + L(3, 4) - L(3, 6)) + O(x^(1/3)/log(x)), where c = A362974, B is Mertens's constant (A077761), L(h, r) = Sum_{p prime} 1/(p^(r/h - 1) * (p - p^(1 - 1/h) + 1)), L(3, 4) = 1.65235055631578303808..., and L(3, 6) = 0.67060646664392140547... (Das et al., 2024).
%t A376363 f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # > 2 &], Length[e], Nothing]]; Array[f, 60000]
%o A376363 (PARI) lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] < 3, is = 0; break)); if(is, print1(#e, ", ")));}
%Y A376363 Cf. A001221, A036966, A072047, A077761, A362974, A376361, A376364, A376365.
%K A376363 nonn,easy
%O A376363 1,10
%A A376363 _Amiram Eldar_, Sep 21 2024