cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376364 The number of unitary divisors that are cubes of primes applied to the cubefull numbers.

This page as a plain text file.
%I A376364 #12 Mar 25 2025 20:08:52
%S A376364 0,1,0,1,0,0,0,1,0,2,0,0,1,1,0,0,1,0,1,2,0,0,1,1,1,1,0,0,1,0,0,2,0,2,
%T A376364 1,0,1,0,1,1,0,1,1,0,1,1,0,1,0,2,0,1,0,2,1,0,1,1,0,0,0,1,0,0,1,1,2,1,
%U A376364 0,0,0,1,1,0,1,1,3,1,1,0,1,1,0,1,0,0,1,2,0,2,0,0,1,2,1,0,0,0,1,1,2,2,1,0,2
%N A376364 The number of unitary divisors that are cubes of primes applied to the cubefull numbers.
%H A376364 Amiram Eldar, <a href="/A376364/b376364.txt">Table of n, a(n) for n = 1..10000</a>
%H A376364 Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, <a href="https://doi.org/10.1016/j.jnt.2024.08.007">On the number of prime factors with a given multiplicity over h-free and h-full numbers</a>, Journal of Number Theory, Vol. 267 (2025), pp. 176-201; <a href="https://arxiv.org/abs/2409.11275">arXiv preprint</a>, arXiv:2409.11275 [math.NT], 2024. See Theorem 1.3.
%H A376364 <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.
%F A376364 a(n) = A295883(A036966(n)).
%F A376364 Sum_{A036966(k) <= x} a(k) = c * sqrt(x) * (log(log(x)) + B - log(3) - L(3, 6)) + O(x^(1/3)/log(x)), where c = A362974, B is Mertens's constant (A077761), L(h, r) = Sum_{p prime} 1/(p^(r/h - 1) * (p - p^(1 - 1/h) + 1)), and L(3, 6) = 0.67060646664392140547... (Das et al., 2025).
%t A376364 f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # > 2 &], Count[e, 3], Nothing]]; Array[f, 60000]
%o A376364 (PARI) lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] < 3, is = 0; break)); if(is, print1(#select(x -> x == 3, e), ", ")));}
%Y A376364 Cf. A036966, A077761, A295883, A362974, A376362, A376363.
%K A376364 nonn,easy
%O A376364 1,10
%A A376364 _Amiram Eldar_, Sep 21 2024