cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376365 The number of distinct prime factors of the cubefree numbers.

This page as a plain text file.
%I A376365 #13 Mar 25 2025 01:28:05
%S A376365 0,1,1,1,1,2,1,1,2,1,2,1,2,2,1,2,1,2,2,2,1,1,2,2,1,3,1,2,2,2,2,1,2,2,
%T A376365 1,3,1,2,2,2,1,1,2,2,2,1,2,2,2,1,3,1,2,2,2,3,1,2,2,3,1,1,2,2,2,2,3,1,
%U A376365 2,1,3,2,2,2,1,3,2,2,2,2,2,1,2,2,2,1,3,1,3,2,1,1,3,2,1,3,2,2,2,2,2,1,2,2,2
%N A376365 The number of distinct prime factors of the cubefree numbers.
%H A376365 Amiram Eldar, <a href="/A376365/b376365.txt">Table of n, a(n) for n = 1..10000</a>
%H A376365 Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, <a href="https://arxiv.org/abs/2409.10430">Distribution of omega(n) over h-free and h-full numbers</a>, arXiv:2409.10430 [math.NT], 2024. See Theorem 1.1.
%F A376365 a(n) = A001221(A004709(n)).
%F A376365 Sum_{A004709(k) <= x} a(k) = (6/Pi^2) * x * (log(log(x)) + B - C) + O(x/log(x)), where B is Mertens's constant (A077761) and C = Sum_{p prime} (p-1)/(p*(p^3-1)) = 0.10770743252352371604... (Das et al., 2024).
%t A376365 f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # < 3 &], Length[e], Nothing]]; Array[f, 150]
%o A376365 (PARI) lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] > 2, is = 0; break)); if(is, print1(#e, ", ")));}
%Y A376365 Cf. A001221, A004709, A059956, A072047, A077761, A376361, A376363, A376366.
%K A376365 nonn,easy
%O A376365 1,6
%A A376365 _Amiram Eldar_, Sep 21 2024