cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376366 The number of non-unitary prime divisors of the cubefree numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # < 3 &], Count[e, 2], Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] > 2, is = 0; break)); if(is, print1(#select(x -> x == 2, e), ", ")));}

Formula

a(n) = A056170(A004709(n)).
a(n) = A369427(A004709(n)).
Sum_{A004709(k) <= x} a(k) = c * x + O(sqrt(x)/log(x)), where c = (1/zeta(3)) * Sum_{p prime} ((p-1)/(p^3-1)) = 0.24833233043359932037... (Das et al., 2025).
a(n) = log_2(A382419(n)). - Amiram Eldar, Mar 25 2025
Sum_{k=1..n} a(k) ~ c * n, where c = Sum_{p prime} ((p-1)/(p^3-1)) = 0.29850959207541746... - Vaclav Kotesovec, Mar 25 2025 (according to the above formula)
From Amiram Eldar, Apr 05 2025: (Start)
a(n) = A046660(A004709(n)).
a(n) = A368779(n) - A376365(n). (End)