This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376370 #18 Oct 01 2024 12:04:44 %S A376370 2,3,10,4,12,6,5,15,20,420,7,21,30,630,120,8,24,56,840,1680,210,9,28, %T A376370 60,1980,60060,1260,4324320,11,35,90,3003,83160,2520,21621600,7207200, %U A376370 13,36,105,7140,180180,5040,24504480,151351200,720720 %N A376370 Square array read by antidiagonals: row n lists numbers that occur exactly n times in A036038 (or A050382 or A078760 or A318762), i.e., numbers m such that the multinomial coefficient (x_1 + ... + x_k)!/(x_1! * ... * x_k!) is equal to m for exactly n integer partitions (x_1, ..., x_k). %C A376370 Row n lists numbers m such that A376369(m) = n. %C A376370 In case there are only finitely many solutions for a certain value of n, the rest of that row is filled with 0's. %C A376370 Any integer k >= 2 appears exactly once in the array. %H A376370 Pontus von Brömssen, <a href="/A376370/b376370.txt">Table of n, a(n) for n = 1..1081</a> (antidiagonals 1..46) %e A376370 Array begins: %e A376370 n\k| 1 2 3 4 5 6 7 8 %e A376370 ---+--------------------------------------------------------------------------------- %e A376370 1 | 2 3 4 5 7 8 9 11 %e A376370 2 | 10 12 15 21 24 28 35 36 %e A376370 3 | 6 20 30 56 60 90 105 252 %e A376370 4 | 420 630 840 1980 3003 7140 7560 9240 %e A376370 5 | 120 1680 60060 83160 180180 240240 831600 900900 %e A376370 6 | 210 1260 2520 5040 27720 166320 1441440 4084080 %e A376370 7 | 4324320 21621600 24504480 43243200 75675600 116396280 367567200 908107200 %e A376370 8 | 7207200 151351200 302702400 411863760 823727520 1816214400 2327925600 4655851200 %Y A376370 Cf. A036038, A050382, A078760, A318762, A325472 (complement of first row), A325593 (complement of the union of the first 2 rows), A376369, A376376 (first column). %Y A376370 First five rows are A376371, A376372, A376373, A376374, A376375. %K A376370 nonn,tabl %O A376370 1,1 %A A376370 _Pontus von Brömssen_, Sep 22 2024