cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376385 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x))^2 ).

This page as a plain text file.
%I A376385 #14 Sep 22 2024 11:06:05
%S A376385 1,0,4,6,280,1620,67788,844200,36344992,752867136,34869857040,
%T A376385 1039132179360,52776841318848,2066262237673920,115959403155851136,
%U A376385 5617102749187849920,348802585405252070400,20063354348482794961920,1375625132090917881338880
%N A376385 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x))^2 ).
%H A376385 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A376385 E.g.f. A(x) satisfies A(x) = 1/(1 + x*A(x) * log(1 - x*A(x)))^2.
%F A376385 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A371230.
%F A376385 a(n) = (2 * n!/(2*n+2)!) * Sum_{k=0..floor(n/2)} (2*n+k+1)! * |Stirling1(n-k,k)|/(n-k)!.
%o A376385 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x))^2)/x))
%o A376385 (PARI) a(n) = 2*n!*sum(k=0, n\2, (2*n+k+1)!*abs(stirling(n-k, k, 1))/(n-k)!)/(2*n+2)!;
%Y A376385 Cf. A370993, A376386.
%Y A376385 Cf. A371230, A375671.
%K A376385 nonn
%O A376385 0,3
%A A376385 _Seiichi Manyama_, Sep 22 2024