This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376386 #15 Sep 22 2024 11:06:10 %S A376386 1,0,6,9,600,3510,204372,2617020,152727936,3319236144,203151929040, %T A376386 6485780434320,425284393933440,18190896271479360,1291781802823916544, %U A376386 69545182272420909600,5374429456543444177920,348502600060029871948800,29344904433432469953368064 %N A376386 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x))^3 ). %H A376386 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A376386 E.g.f. A(x) satisfies A(x) = 1/(1 + x*A(x) * log(1 - x*A(x)))^3. %F A376386 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A371232. %F A376386 a(n) = (3 * n!/(3*n+3)!) * Sum_{k=0..floor(n/2)} (3*n+k+2)! * |Stirling1(n-k,k)|/(n-k)!. %o A376386 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x))^3)/x)) %o A376386 (PARI) a(n) = 3*n!*sum(k=0, n\2, (3*n+k+2)!*abs(stirling(n-k, k, 1))/(n-k)!)/(3*n+3)!; %Y A376386 Cf. A370993, A376385. %Y A376386 Cf. A371232, A376387. %Y A376386 Cf. A375672. %K A376386 nonn %O A376386 0,3 %A A376386 _Seiichi Manyama_, Sep 22 2024