This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376393 #12 Sep 22 2024 11:15:34 %S A376393 1,3,33,669,20130,808902,40799514,2480325810,176637134184, %T A376393 14428585258896,1330156753687152,136632403748954088, %U A376393 15476220160149512160,1916493979349783418192,257601843144279267685056,37352685483321694825767120,5812026059839341212943591168,965974072760231560672817681280 %N A376393 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + log(1-x))^3 ). %H A376393 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A376393 E.g.f. A(x) satisfies A(x) = 1/(1 + log(1 - x*A(x)))^3. %F A376393 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A367139. %F A376393 a(n) = (3/(3*n+3)!) * Sum_{k=0..n} (3*n+k+2)! * |Stirling1(n,k)|. %o A376393 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+log(1-x))^3)/x)) %o A376393 (PARI) a(n) = 3*sum(k=0, n, (3*n+k+2)!*abs(stirling(n, k, 1)))/(3*n+3)!; %Y A376393 Cf. A367139, A376394. %Y A376393 Cf. A354122. %K A376393 nonn %O A376393 0,2 %A A376393 _Seiichi Manyama_, Sep 22 2024