cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376404 Dirichlet inverse of 2*phi(n) - phi(A003961(n)), where phi is Euler totient function and A003961(n) is fully multiplicative function with a(prime(i)) = prime(i+1).

This page as a plain text file.
%I A376404 #9 Nov 15 2024 15:12:02
%S A376404 1,0,0,2,-2,4,-2,10,8,4,-8,16,-8,8,8,42,-14,28,-14,12,16,4,-16,72,6,8,
%T A376404 64,28,-26,16,-24,170,8,4,20,144,-32,8,16,52,-38,40,-38,0,40,12,-40,
%U A376404 328,30,28,8,16,-46,228,24,124,16,4,-56,112,-54,12,96,682,32,-8,-62,-12,24,24,-68,712,-66,8,56,4,32,16
%N A376404 Dirichlet inverse of 2*phi(n) - phi(A003961(n)), where phi is Euler totient function and A003961(n) is fully multiplicative function with a(prime(i)) = prime(i+1).
%H A376404 Antti Karttunen, <a href="/A376404/b376404.txt">Table of n, a(n) for n = 1..20000</a>
%H A376404 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>
%F A376404 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} -A349754(n/d) * a(d).
%F A376404 a(n) = Sum_{d|n} A346248(d).
%o A376404 (PARI)
%o A376404 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A376404 A349754(n) = (eulerphi(A003961(n))-2*eulerphi(n));
%o A376404 memoA376404 = Map();
%o A376404 A376404(n) = if(1==n,1,my(v); if(mapisdefined(memoA376404,n,&v), v, v = -sumdiv(n,d,if(d<n,-A349754(n/d)*A376404(d),0)); mapput(memoA376404,n,v); (v)));
%Y A376404 Cf. A000010, A003961, A003972.
%Y A376404 Dirichlet inverse of -A349754, inverse Möbius transform of A346248.
%Y A376404 Cf. also A323912.
%K A376404 sign
%O A376404 1,4
%A A376404 _Antti Karttunen_, Nov 15 2024