cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376411 a(n) is the number of terms less than A276086(n) in the range of A276086, where A276086 is the primorial base exp-function.

This page as a plain text file.
%I A376411 #34 Nov 14 2024 08:22:08
%S A376411 0,1,2,4,6,13,3,7,11,21,32,64,18,36,54,108,162,325,90,180,271,541,812,
%T A376411 1624,450,902,1354,2707,4061,8122,5,10,15,30,45,91,25,50,75,151,227,
%U A376411 454,126,253,378,758,1137,2274,632,1264,1895,3790,5685,11370,3158,6317,9475,18952,28428,56856,35,70,106,212,318,637
%N A376411 a(n) is the number of terms less than A276086(n) in the range of A276086, where A276086 is the primorial base exp-function.
%C A376411 Number of terms of A048103 that are less than A276086(n).
%C A376411 Permutation of nonnegative integers.
%C A376411 Troughs are at primorials, A002110, and the local maxima occur just before, at A057588.
%H A376411 Antti Karttunen, <a href="/A376411/b376411.txt">Table of n, a(n) for n = 0..419</a>
%H A376411 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H A376411 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A376411 a(n) = A377982(A276086(n))-1 = Sum_{i=1 .. A276086(n)-1} A359550(i).
%F A376411 For all n >= 1, a(A376413(n)) = n-1, and for all n >= 0, A376413(1+a(n)) = n.
%F A376411 a(i)/a(j) ~ A276086(i)/A276086(j), and particularly, a(2*n+1) ~ 2*a(2*n).
%o A376411 (PARI)
%o A376411 up_to = (2*210)-1; \\ Must be one of the terms of A343048.
%o A376411 A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); };
%o A376411 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A376411 A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); };
%o A376411 A376411list(up_to) = { my(size=up_to, v=vector(size), m=A276086(size), s=1, j); for(i=2,m,if(!(m%i), j=A276085(i); v[j] = s; print1("i=",i," v[",j,"]=",s", ");); s += A359550(i)); (v); };
%o A376411 v376411 = A376411list(up_to);
%o A376411 A376411(n) = if(!n,n,v376411[n]);
%o A376411 (PARI)
%o A376411 \\ For incremental computing, less efficient than above:
%o A376411 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A376411 A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); };
%o A376411 memoA376411 = Map(); \\ We use k=A276086(n) as our key. kvs will be a list of key-value-pairs sorted into descending order by the key. We search the largest key in it < k, and continue summing from that:
%o A376411 A376411(n) = if(n<=2,n,my(v, k=A276086(n)); if(mapisdefined(memoA376411,k,&v), v, my(kvs = vecsort(Mat(memoA376411)~,(x,y) -> sign(y[1]-x[1])), ss=si=0); for(i=1, #kvs, if(kvs[1,i]<k, si=kvs[1,i]; ss=kvs[2,i]; break)); v = ss + sum(i=si,k-1,A359550(i)); mapput(memoA376411,k,v); (v)));
%Y A376411 Cf. A048103, A057588, A276086, A343048, A359550, A377982.
%Y A376411 Cf. A376413 (inverse permutation, but note the different offsets and ranges).
%Y A376411 Cf. also A064273 (analogous permutation for base-2).
%K A376411 nonn
%O A376411 0,3
%A A376411 _Antti Karttunen_, Nov 13 2024