This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376437 #12 Sep 23 2024 09:28:15 %S A376437 1,0,0,18,36,120,24300,192024,1572480,194205600,3380922720, %T A376437 50671716480,4879442177280,144175221440640,3391736273557632, %U A376437 287077095515548800,12328722259931750400,413067654425986560000,33216197499043235527680 %N A376437 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x))^3 ). %H A376437 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A376437 E.g.f. A(x) satisfies A(x) = 1/(1 + x^2*A(x)^2 * log(1 - x*A(x)))^3. %F A376437 a(n) = (3 * n!/(3*n+3)!) * Sum_{k=0..floor(n/3)} (3*n+k+2)! * |Stirling1(n-2*k,k)|/(n-2*k)!. %o A376437 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2*log(1-x))^3)/x)) %o A376437 (PARI) a(n) = 3*n!*sum(k=0, n\3, (3*n+k+2)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(3*n+3)!; %Y A376437 Cf. A376386, A376393. %Y A376437 Cf. A375679. %K A376437 nonn %O A376437 0,4 %A A376437 _Seiichi Manyama_, Sep 22 2024