This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376441 #12 Sep 23 2024 09:28:31 %S A376441 1,0,0,12,0,120,10800,3360,766080,56064960,76507200,12988926720, %T A376441 885913459200,3162288729600,477701680135680,31728803730624000, %U A376441 230820218044416000,32828647402065715200,2173902177236319129600,27658882036996206796800,3801535675181689116672000,255228267875636473786368000 %N A376441 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x^2))^2 ). %H A376441 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A376441 E.g.f. A(x) satisfies A(x) = 1/(1 + x*A(x) * log(1 - x^2*A(x)^2))^2. %F A376441 a(n) = (2 * n!/(2n+2)!) * Sum_{k=0..floor(n/2)} (3*n-2*k+1)! * |Stirling1(k,n-2*k)|/k!. %o A376441 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x^2))^2)/x)) %o A376441 (PARI) a(n) = 2*n!*sum(k=0, n\2, (3*n-2*k+1)!*abs(stirling(k, n-2*k, 1))/k!)/(2*n+2)!; %Y A376441 Cf. A376344, A376442. %Y A376441 Cf. A375680. %K A376441 nonn %O A376441 0,4 %A A376441 _Seiichi Manyama_, Sep 22 2024