cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376442 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x^2))^3 ).

This page as a plain text file.
%I A376442 #11 Sep 23 2024 09:28:35
%S A376442 1,0,0,18,0,180,23760,5040,1693440,180260640,169646400,42116215680,
%T A376442 4148153856000,10311946444800,2266331900152320,215416210961952000,
%U A376442 1103951255139532800,227420391096138240000,21290356810886504140800,193675502529294757171200,38377888101603670523904000
%N A376442 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x^2))^3 ).
%H A376442 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A376442 E.g.f. A(x) satisfies A(x) = 1/(1 + x*A(x) * log(1 - x^2*A(x)^2))^3.
%F A376442 a(n) = (3 * n!/(3n+3)!) * Sum_{k=0..floor(n/2)} (4*n-2*k+2)! * |Stirling1(k,n-2*k)|/k!.
%o A376442 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x^2))^3)/x))
%o A376442 (PARI) a(n) = 3*n!*sum(k=0, n\2, (4*n-2*k+2)!*abs(stirling(k, n-2*k, 1))/k!)/(3*n+3)!;
%Y A376442 Cf. A376344, A376441.
%Y A376442 Cf. A375681.
%K A376442 nonn
%O A376442 0,4
%A A376442 _Seiichi Manyama_, Sep 22 2024