cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376470 Numbers k such that (29^k - 2^k)/27 is prime.

This page as a plain text file.
%I A376470 #6 Feb 16 2025 08:34:07
%S A376470 2,7,139,983,3257,10181,26387,36187,42557
%N A376470 Numbers k such that (29^k - 2^k)/27 is prime.
%C A376470 The definition implies that k must be a prime.
%C A376470 a(10) > 10^5.
%H A376470 P. Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a>.
%H A376470 J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
%H A376470 H. Dubner and T. Granlund, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.
%H A376470 H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>
%H A376470 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Repunit.html">Repunit</a>.
%t A376470 Select[Prime[Range[1000]], PrimeQ[(29^# - 2^#)/27] &]
%Y A376470 Cf. A062587, A062589, A127996, A127997, A128344, A204940, A217320, A225807, A229542, A375161, A375236.
%K A376470 nonn,hard,more
%O A376470 1,1
%A A376470 _Robert Price_, Sep 24 2024