This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376471 #9 Sep 24 2024 09:29:00 %S A376471 1,2,3,5,6,7,9,11,13,17,19,20,23,25,29,31,37,41,43,47,53,59,61,67,71, %T A376471 73,77,79,81,83,89,97,101,103,107,109,113,121,127,131,137,139,149,151, %U A376471 157,163,167,173,179,181,191,193,197,199,208,211,223,227,229,233,239,241 %N A376471 Lexicographically earliest strictly increasing sequence of numbers whose partial products are all exponentially 2^n-numbers (A138302). %C A376471 All the primes are terms. %H A376471 Amiram Eldar, <a href="/A376471/b376471.txt">Table of n, a(n) for n = 1..10000</a> %e A376471 1 * 2 = 2^1 and 1 = 2^0. %e A376471 1 * 2 * 3 = 6 = 2^1 * 3^1 and 1 = 2^0. %e A376471 1 * 2 * 3 * 5 * 6 = 180 = 2^2 * 3^2 * 5^1, 1 = 2^0 and 2 = 2^1. %t A376471 expPow2Q[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &]; a[1] = 1; a[n_] := a[n] = Module[{prod = Times @@ Array[a, n - 1], k = a[n - 1] + 1}, While[! expPow2Q[prod*k], k++]; k]; Array[a, 100] %o A376471 (PARI) ispow2(n) = if(n == 0, 1, n >> valuation(n, 2) == 1); %o A376471 lista(pindmax) = {my(pmax = prime(pindmax), v = vector(pindmax), f, pind, prd); print1(1, ", "); for(k = 2, pmax, f = factor(k); pind = apply(x -> primepi(x), f[,1]); for(i = 1, #pind, v[pind[i]] += f[i, 2]); if(vecprod(apply(x -> ispow2(x), v)) > 0, print1(k, ", "), for(i = 1, #pind, v[pind[i]] -= f[i, 2])));} %Y A376471 Disjoint union of A000040 and A376472. %Y A376471 Similar sequences: %Y A376471 Sequence | Partial products are in | Exponents are in %Y A376471 --------------+-------------------------+------------------------ %Y A376471 A050376 | A037992 | A000225 \ {0} (2^n-1) %Y A376471 A089237 | A268335 | A005408 (odd numbers) %Y A376471 {1} U A246551 | A246551 | A000290 \ {0} (squares) %Y A376471 this sequence | A138302 | A000079 (powers of 2) %K A376471 nonn %O A376471 1,2 %A A376471 _Amiram Eldar_, Sep 24 2024