cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376471 Lexicographically earliest strictly increasing sequence of numbers whose partial products are all exponentially 2^n-numbers (A138302).

This page as a plain text file.
%I A376471 #9 Sep 24 2024 09:29:00
%S A376471 1,2,3,5,6,7,9,11,13,17,19,20,23,25,29,31,37,41,43,47,53,59,61,67,71,
%T A376471 73,77,79,81,83,89,97,101,103,107,109,113,121,127,131,137,139,149,151,
%U A376471 157,163,167,173,179,181,191,193,197,199,208,211,223,227,229,233,239,241
%N A376471 Lexicographically earliest strictly increasing sequence of numbers whose partial products are all exponentially 2^n-numbers (A138302).
%C A376471 All the primes are terms.
%H A376471 Amiram Eldar, <a href="/A376471/b376471.txt">Table of n, a(n) for n = 1..10000</a>
%e A376471 1 * 2 = 2^1 and 1 = 2^0.
%e A376471 1 * 2 * 3 = 6 = 2^1 * 3^1 and 1 = 2^0.
%e A376471 1 * 2 * 3 * 5 * 6 = 180 = 2^2 * 3^2 * 5^1, 1 = 2^0 and 2 = 2^1.
%t A376471 expPow2Q[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &]; a[1] = 1; a[n_] := a[n] = Module[{prod = Times @@ Array[a, n - 1], k = a[n - 1] + 1}, While[! expPow2Q[prod*k], k++]; k]; Array[a, 100]
%o A376471 (PARI) ispow2(n) = if(n == 0, 1, n >> valuation(n, 2) == 1);
%o A376471 lista(pindmax) = {my(pmax = prime(pindmax), v = vector(pindmax), f, pind, prd); print1(1, ", "); for(k = 2, pmax, f = factor(k); pind = apply(x -> primepi(x), f[,1]); for(i = 1, #pind, v[pind[i]] += f[i, 2]); if(vecprod(apply(x -> ispow2(x), v)) > 0, print1(k, ", "), for(i = 1, #pind, v[pind[i]] -= f[i, 2])));}
%Y A376471 Disjoint union of A000040 and A376472.
%Y A376471 Similar sequences:
%Y A376471   Sequence      | Partial products are in | Exponents are in
%Y A376471   --------------+-------------------------+------------------------
%Y A376471   A050376       | A037992                 | A000225 \ {0} (2^n-1)
%Y A376471   A089237       | A268335                 | A005408 (odd numbers)
%Y A376471   {1} U A246551 | A246551                 | A000290 \ {0} (squares)
%Y A376471   this sequence | A138302                 | A000079 (powers of 2)
%K A376471 nonn
%O A376471 1,2
%A A376471 _Amiram Eldar_, Sep 24 2024