This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376479 #6 Sep 27 2024 23:07:51 %S A376479 1,2,1,3,3,1,4,9,5,1,5,17,30,8,1,6,40,82,90,14,1,7,56,328,385,269,23, %T A376479 1,8,90,551,2556,1688,788,39,1,9,114,1243,5138,18452,7089,2249,64,1, %U A376479 10,164,1763,15590,44329,126096,28893,6340,103,1,11,253,3112,24646,179313,361249,827901,115180,17526 %N A376479 Array read by antidiagonals: T(n,k) is the index of prime(k)^n in the numbers with n prime factors, counted with multiplicity. %C A376479 T(n,k) is the number of numbers j with n prime factors, counted with multiplicity, such that j <= prime(k)^n. %e A376479 T(2,3) = 9 because the third prime is 5 and 5^2 = 25 is the 9th semiprime. %p A376479 T:= Matrix(12,12): %p A376479 with(priqueue); %p A376479 for m from 1 to 12 do %p A376479 initialize(pq); %p A376479 insert([-2^m, [2$m]],pq); %p A376479 k:= 0: %p A376479 for count from 1 do %p A376479 t:= extract(pq); %p A376479 w:= t[2]; %p A376479 if nops(convert(w,set))=1 then %p A376479 k:= k+1; %p A376479 T[m,k]:= count; %p A376479 if m+k = 13 then break fi; %p A376479 fi; %p A376479 p:= nextprime(w[-1]); %p A376479 for i from m to 1 by -1 while w[i] = w[m] do %p A376479 insert([t[1]*(p/w[-1])^(m+1-i),[op(w[1..i-1]),p$(m+1-i)]],pq); %p A376479 od od od: %p A376479 seq(seq(T[i,s-i],i=1..s-1),s=2..13) %Y A376479 Cf. A001222, A078843 (second column), A078844 (third column), A078845 (fourth column), A078846 (fifth column), A128301 (second row), A128302 (third row), A128304 (fourth row). %K A376479 nonn,tabl %O A376479 1,2 %A A376479 _Robert Israel_, Sep 24 2024