This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376485 #18 Sep 25 2024 15:40:48 %S A376485 561,1105,1729,2465,2821,75361,63973,1050985,6601,41041,29341,172081, %T A376485 552721,852841,10877581,1256855041,8911,340561,15182481601, %U A376485 72720130561,10585,15841,126217,825265,2433601,496050841,672389641,5394826801,24465723528961,1074363265,24172484701,62745,2806205689,22541365441,46657,2113921,6436473121,6557296321,13402361281,26242929505,65320532641,143873352001,105083995864811041 %N A376485 Carmichael numbers ordered by largest prime factor, then by size. %e A376485 17: 561, 1105; %e A376485 19: 1729; %e A376485 23: %e A376485 29: 2465; %e A376485 31: 2821, 75361; %e A376485 37: 63973, 1050985; %e A376485 41: 6601, 41041; %e A376485 43: %e A376485 47: %e A376485 53: %e A376485 59: %e A376485 61: 29341, 172081, 552721, 852841, 10877581, 1256855041; %e A376485 67: 8911, 340561, 15182481601; %e A376485 71: 72720130561; %e A376485 73: 10585, 15841, 126217, 825265, 2433601, 496050841, 672389641, 5394826801, 24465723528961; %e A376485 79: 1074363265, 24172484701 %e A376485 83: %e A376485 89: 62745, 2806205689, 22541365441; %e A376485 97: 46657, 2113921, 6436473121, 6557296321, 13402361281, 26242929505, 65320532641, 143873352001, 105083995864811041 %e A376485 101: 101101, 252601, 2100901, 9494101, 6820479601, 109038862801, 102967089120001 %o A376485 (PARI) \\ This program is inefficient and functions as proof-of-concept only. %o A376485 Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1 %o A376485 car(n)=n%2 && !isprime(n) && Korselt(n) && n>1 %o A376485 row(k)=my(p=prime(k)); fordiv(prod(i=2,k-1,prime(i)),n,if(car(p*n), print1(p*n,", "))) %o A376485 (Python) %o A376485 from itertools import islice, combinations %o A376485 from math import prod %o A376485 from sympy import nextprime %o A376485 def A376485_gen(): # generator of terms %o A376485 plist, p = [3, 5], 7 %o A376485 while True: %o A376485 clist = [] %o A376485 for l in range(2,len(plist)+1): %o A376485 for q in combinations(plist,l): %o A376485 k = prod(q)*p-1 %o A376485 if not (k%(p-1) or any(k%(r-1) for r in q)): %o A376485 clist.append(k+1) %o A376485 yield from sorted(clist) %o A376485 plist.append(p) %o A376485 p = nextprime(p) %o A376485 A376485_list = list(islice(A376485_gen(),43)) # _Chai Wah Wu_, Sep 25 2024 %Y A376485 Cf. A002997, A081702, A283715 (row lengths). %K A376485 nonn,tabf %O A376485 1,1 %A A376485 _Charles R Greathouse IV_, Sep 24 2024