cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376485 Carmichael numbers ordered by largest prime factor, then by size.

This page as a plain text file.
%I A376485 #18 Sep 25 2024 15:40:48
%S A376485 561,1105,1729,2465,2821,75361,63973,1050985,6601,41041,29341,172081,
%T A376485 552721,852841,10877581,1256855041,8911,340561,15182481601,
%U A376485 72720130561,10585,15841,126217,825265,2433601,496050841,672389641,5394826801,24465723528961,1074363265,24172484701,62745,2806205689,22541365441,46657,2113921,6436473121,6557296321,13402361281,26242929505,65320532641,143873352001,105083995864811041
%N A376485 Carmichael numbers ordered by largest prime factor, then by size.
%e A376485 17: 561, 1105;
%e A376485 19: 1729;
%e A376485 23:
%e A376485 29: 2465;
%e A376485 31: 2821, 75361;
%e A376485 37: 63973, 1050985;
%e A376485 41: 6601, 41041;
%e A376485 43:
%e A376485 47:
%e A376485 53:
%e A376485 59:
%e A376485 61: 29341, 172081, 552721, 852841, 10877581, 1256855041;
%e A376485 67: 8911, 340561, 15182481601;
%e A376485 71: 72720130561;
%e A376485 73: 10585, 15841, 126217, 825265, 2433601, 496050841, 672389641, 5394826801, 24465723528961;
%e A376485 79: 1074363265, 24172484701
%e A376485 83:
%e A376485 89: 62745, 2806205689, 22541365441;
%e A376485 97: 46657, 2113921, 6436473121, 6557296321, 13402361281, 26242929505, 65320532641, 143873352001, 105083995864811041
%e A376485 101: 101101, 252601, 2100901, 9494101, 6820479601, 109038862801, 102967089120001
%o A376485 (PARI) \\ This program is inefficient and functions as proof-of-concept only.
%o A376485 Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
%o A376485 car(n)=n%2 && !isprime(n) && Korselt(n) && n>1
%o A376485 row(k)=my(p=prime(k)); fordiv(prod(i=2,k-1,prime(i)),n,if(car(p*n), print1(p*n,", ")))
%o A376485 (Python)
%o A376485 from itertools import islice, combinations
%o A376485 from math import prod
%o A376485 from sympy import nextprime
%o A376485 def A376485_gen(): # generator of terms
%o A376485     plist, p = [3, 5], 7
%o A376485     while True:
%o A376485         clist = []
%o A376485         for l in range(2,len(plist)+1):
%o A376485             for q in combinations(plist,l):
%o A376485                 k = prod(q)*p-1
%o A376485                 if not (k%(p-1) or any(k%(r-1) for r in q)):
%o A376485                     clist.append(k+1)
%o A376485         yield from sorted(clist)
%o A376485         plist.append(p)
%o A376485         p = nextprime(p)
%o A376485 A376485_list = list(islice(A376485_gen(),43)) # _Chai Wah Wu_, Sep 25 2024
%Y A376485 Cf. A002997, A081702, A283715 (row lengths).
%K A376485 nonn,tabf
%O A376485 1,1
%A A376485 _Charles R Greathouse IV_, Sep 24 2024