cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376487 G.f. satisfies A(x) = 1 / (1 - x^4*A(x)^4 * (1 + x)).

This page as a plain text file.
%I A376487 #10 Sep 25 2024 10:29:56
%S A376487 1,0,0,0,1,1,0,0,5,10,5,0,35,105,105,35,285,1140,1710,1140,2815,12650,
%T A376487 25300,25300,36401,145036,356265,475020,588145,1765666,4893231,
%U A376487 8115800,10446245,23513040,66875620,130736800,187081505,346058115,927465240
%N A376487 G.f. satisfies A(x) = 1 / (1 - x^4*A(x)^4 * (1 + x)).
%H A376487 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A376487 G.f.: (1/x) * Series_Reversion( x*(1-x^4)/(1+x^5) ).
%F A376487 a(n) = Sum_{k=0..floor(n/4)} binomial(5*k,k) * binomial(k,n-4*k) / (4*k+1).
%o A376487 (PARI) a(n) = sum(k=0, n\4, binomial(5*k, k)*binomial(k, n-4*k)/(4*k+1));
%Y A376487 Cf. A005043, A052709, A376486.
%K A376487 nonn
%O A376487 0,9
%A A376487 _Seiichi Manyama_, Sep 25 2024