cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376491 G.f. satisfies A(x) = 1 / (1 - x^4*A(x)^4 / (1 - x)).

This page as a plain text file.
%I A376491 #8 Sep 25 2024 10:29:45
%S A376491 1,0,0,0,1,1,1,1,6,11,16,21,61,136,246,391,856,1926,3886,7021,14146,
%T A376491 30606,64276,125561,251147,527752,1115877,2273557,4611992,9583058,
%U A376491 20198698,41982193,86481758,179676908,377608039,791559669,1649078139,3441054929
%N A376491 G.f. satisfies A(x) = 1 / (1 - x^4*A(x)^4 / (1 - x)).
%F A376491 a(n) = Sum_{k=0..floor(n/4)} binomial(5*k,k) * binomial(n-3*k-1,n-4*k) / (4*k+1).
%o A376491 (PARI) a(n) = sum(k=0, n\4, binomial(5*k, k)*binomial(n-3*k-1, n-4*k)/(4*k+1));
%Y A376491 Cf. A002212, A376489, A376490.
%K A376491 nonn
%O A376491 0,9
%A A376491 _Seiichi Manyama_, Sep 25 2024