cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376495 E.g.f. satisfies A(x) = exp(x^3 * A(x)^3 / (1 - x)).

This page as a plain text file.
%I A376495 #12 Feb 16 2025 08:34:07
%S A376495 1,0,0,6,24,120,3240,40320,463680,11491200,248572800,4869849600,
%T A376495 135896745600,4017466252800,113150157120000,3765622699238400,
%U A376495 137549036072448000,5019223860338688000,199794776937044889600,8636618647667288678400
%N A376495 E.g.f. satisfies A(x) = exp(x^3 * A(x)^3 / (1 - x)).
%H A376495 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A376495 E.g.f.: exp( -LambertW(-3*x^3 / (1-x))/3 ).
%F A376495 a(n) = n! * Sum_{k=0..floor(n/3)} (3*k+1)^(k-1) * binomial(n-2*k-1,n-3*k)/k!.
%o A376495 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x^3/(1-x))/3)))
%o A376495 (PARI) a(n) = n!*sum(k=0, n\3, (3*k+1)^(k-1)*binomial(n-2*k-1, n-3*k)/k!);
%Y A376495 Cf. A052868, A376494.
%Y A376495 Cf. A376475.
%K A376495 nonn
%O A376495 0,4
%A A376495 _Seiichi Manyama_, Sep 25 2024