This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376501 #15 Oct 23 2024 16:27:32 %S A376501 241,281,283,401,421,461,463,467,601,607,641,643,647,683,809,821,823, %T A376501 863,1021,1049,1061,1069,1201,1249,1283,1409,1429,1487,1601,1609,1823, %U A376501 1847,2011,2027,2039,2161,2207,2347,2389,2411,2417,2441,2459,2473,2503,2543,2617,2657,2671,2677,2699,2707 %N A376501 Primes that contain at least two different even digits where any permutation of the even digits leaving the odd digits fixed produces a prime. See comments for the treatment of 0. %C A376501 Primes for which permutations described in the name produce primes with leading 0s are in the sequence but the generated primes with leading 0s are not. For example, a transposition in 401 produces 041, hence 401 is in the sequence but 41 is not. %H A376501 Robert Israel, <a href="/A376501/b376501.txt">Table of n, a(n) for n = 1..10000</a> %e A376501 2027, 2207 are primes and 227 is prime with a leading 0 generated by permuting even digits in either 2027 or 2207. Hence 2027 and 2207 are in the sequence but 227 is not due to the leading 0. %e A376501 6067, 6607 are primes but 667 generated by permuting even digits in either 6067 or 6607 is not prime, hence by name, neither number is in the sequence. %p A376501 filter:= proc(n) local L,oddi,eveni,xodd,i; %p A376501 if not isprime(n) then return false fi; %p A376501 L:= convert(n,base,10); %p A376501 oddi,eveni:= selectremove(t -> L[t]::odd,[$1..nops(L)]); %p A376501 if nops(convert(L[eveni],set))<2 then return false fi; %p A376501 xodd:= add(10^(i-1)*L[i],i=oddi); %p A376501 andmap(t -> isprime(xodd+add(10^(eveni[i]-1)*L[t[i]],i=1..nops(eveni))), combinat:-permute(eveni)) %p A376501 end proc: %p A376501 select(filter, [seq(i,i=3..10000,2)]); # _Robert Israel_, Oct 23 2024 %Y A376501 Cf. A000040, A003459, A376500, A376502. %K A376501 nonn,base %O A376501 1,1 %A A376501 _Enrique Navarrete_, Sep 25 2024