cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376507 Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 76.

This page as a plain text file.
%I A376507 #8 Sep 30 2024 12:59:12
%S A376507 18,24,26,32,68,74,76,82,118,124,126,132,168,174,176,182,218,224,226,
%T A376507 232,268,274,276,282,318,324,326,332,368,374,376,382,418,424,426,432,
%U A376507 468,474,476,482,518,524,526,532,568,574,576,582,618,624,626,632,668,674
%N A376507 Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 76.
%C A376507 The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (this sequence), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (cf. A376509).
%C A376507 The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 6, 2, 6, 36, ...
%D A376507 Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).
%H A376507 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F A376507 G.f.: 2*x*(9 + 3*x + x^2 + 3*x^3 + 9*x^4)/((1 - x)^2*(1 + x + x^2 + x^3)). - _Stefano Spezia_, Sep 26 2024
%e A376507 18^2 = 24 -> 24^2 = 76 -> 76^2 = 76 -> ... (mod 100).
%Y A376507 Cf. A008592, A017329, A376506, A376508, A376509.
%K A376507 nonn,easy
%O A376507 1,1
%A A376507 _Martin Renner_, Sep 25 2024