cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376518 E.g.f. satisfies A(x) = exp(x^3 * (1 + x) * A(x)).

This page as a plain text file.
%I A376518 #13 Feb 16 2025 08:34:07
%S A376518 1,0,0,6,24,0,1080,15120,60480,967680,29030400,319334400,3772137600,
%T A376518 129729600000,2724321600000,41366099174400,1238803517952000,
%U A376518 38414242234368000,840907325318860800,23606245443503923200,878145842759657472000,26509751796795531264000
%N A376518 E.g.f. satisfies A(x) = exp(x^3 * (1 + x) * A(x)).
%H A376518 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A376518 E.g.f.: exp( -LambertW(-x^3 * (1+x)) ).
%F A376518 a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) * binomial(k,n-3*k)/k!.
%o A376518 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x^3*(1+x)))))
%o A376518 (PARI) a(n) = n!*sum(k=0, n\3, (k+1)^(k-1)*binomial(k, n-3*k)/k!);
%Y A376518 Cf. A362771, A376517.
%Y A376518 Cf. A376493, A376513.
%K A376518 nonn,easy
%O A376518 0,4
%A A376518 _Seiichi Manyama_, Sep 26 2024