This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376519 #6 Sep 30 2024 09:15:40 %S A376519 8,14,15,20,22,25,26,31,40,46,52,59,68,75,88,96,102,110,111,112,114, %T A376519 128,136,144,145,162,180,188,198,216,226,235,246,264,265,275,285,295, %U A376519 305,316,317,325,328,338,350,360,367,373,385,406,416,417,419,431,443 %N A376519 Positions of terms not appearing for the first time in the first differences (A053289) of perfect-powers (A001597). %e A376519 The perfect powers (A001597) are: %e A376519 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ... %e A376519 with first differences (A053289): %e A376519 3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, ... %e A376519 with positions of latter appearances (A376519): %e A376519 8, 14, 15, 20, 22, 25, 26, 31, 40, 46, 52, 59, 68, 75, 88, 96, 102, 110, 111, ... %t A376519 perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1; %t A376519 q=Differences[Select[Range[1000],perpowQ]]; %t A376519 Select[Range[Length[q]],MemberQ[Take[q,#-1],q[[#]]]&] %Y A376519 These are the sorted positions of latter appearances in A053289 (union A023055). %Y A376519 The complement is A376268. %Y A376519 A053707 lists first differences of consecutive prime-powers. %Y A376519 A333254 lists run-lengths of differences between consecutive primes. %Y A376519 Other families of numbers and their first differences: %Y A376519 For prime numbers (A000040) we have A001223. %Y A376519 For composite numbers (A002808) we have A073783. %Y A376519 For nonprime numbers (A018252) we have A065310. %Y A376519 For perfect powers (A001597) we have A053289. %Y A376519 For non-perfect-powers (A007916) we have A375706. %Y A376519 For squarefree numbers (A005117) we have A076259. %Y A376519 For nonsquarefree numbers (A013929) we have A078147. %Y A376519 For prime-powers inclusive (A000961) we have A057820. %Y A376519 For prime-powers exclusive (A246655) we have A057820(>1). %Y A376519 For non-prime-powers inclusive (A024619) we have A375735. %Y A376519 For non-prime-powers exclusive (A361102) we have A375708. %Y A376519 Cf. A025475, A045542, A046933, A052410, A069623, A174965, A216765, A303707, A305630, A305631, A375736. %K A376519 nonn %O A376519 1,1 %A A376519 _Gus Wiseman_, Sep 28 2024