cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376544 a(n) is the number of singleton commuting ordered set partitions.

This page as a plain text file.
%I A376544 #37 Dec 01 2024 20:40:40
%S A376544 1,1,2,8,40,242,1784,15374,151008,1669010,20503768,277049126,
%T A376544 4083693200,65211041690,1121435565384,20662801363790,406100030507200,
%U A376544 8480197575505442,187500501495191480,4376026842424336886,107506303414618515696,2773174380946415844266
%N A376544 a(n) is the number of singleton commuting ordered set partitions.
%C A376544 a(n) is also the dimension of the span of chromatic quasi-symmetric invariants of generalized permutahedra.
%H A376544 Alois P. Heinz, <a href="/A376544/b376544.txt">Table of n, a(n) for n = 0..435</a>
%H A376544 Vladimir Grujić, <a href="https://doi.org/10.26493/1855-3974.1132.fae">Counting faces of graphical zonotopes</a>, Ars Math. Contemp., 13(1), 2017; <a href="https://arxiv.org/abs/1604.06931">arXiv preprint</a>, arXiv:1604.06931 [math.CO], 2017.
%H A376544 Raul Penaguiao, <a href="https://doi.org/10.1016/j.jcta.2020.105258">The kernel of chromatic quasisymmetric functions on graphs and hypergraphic polytopes</a>, Journal of Combinatorial Theory, Series A, 175, 105258, 2020.
%F A376544 Asymptotic growth: a(n) = n! * b^(-n) * c, where b is the unique positive root of exp(2*x) = 1 + e^x + x*e^x, and c is 0.722487... .
%F A376544 From _Andrew Howroyd_, Sep 27 2024: (Start)
%F A376544 a(n) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} binomial(n,k)*A358623(k,j)*j!*(j+1)^(n-k).
%F A376544 E.g.f.: exp(x)/(1 - exp(x)*(exp(x)-x-1)). (End)
%F A376544 In the notation above, c = 1/(b*(2*exp(b) - b - 2)). - _Vaclav Kotesovec_, Nov 21 2024
%e A376544 a(2) = 2 because the ordered set partitions 1|2 and 2|1 are counted only once.
%e A376544 a(3) = 8, all ordered set partitions with length 3 (e.g. 1|2|3) are counted only once.
%e A376544 a(4) = 40 counts 1|34|2 separately to 2|34|1, but treats 1|2|34 as the same as 2|1|34 since only adjacent singletons can commute.
%p A376544 b:= proc(n, p) option remember; `if`(n=0, 1/p!, add(
%p A376544       b(n-j, 0)*binomial(n, j)/p!, j=2..n)+b(n-1, p+1)*n)
%p A376544     end:
%p A376544 a:= n-> b(n, 0):
%p A376544 seq(a(n), n=0..21);  # _Alois P. Heinz_, Nov 19 2024
%o A376544 (PARI) \\ here B(n,k) is A008299 or A358623.
%o A376544 B(n, k) = {sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); }
%o A376544 a(n)={sum(k=0, n, binomial(n,k)*sum(j=0, k\2, B(k,j)*j!*(j+1)^(n-k)))} \\ _Andrew Howroyd_, Sep 27 2024
%o A376544 (PARI) seq(n)=my(g=exp(x + O(x*x^n))); Vec(serlaplace(g/(1 - g*(g-x-1)))) \\ _Andrew Howroyd_, Sep 27 2024
%Y A376544 Corresponds to a subset of elements counted in A000670.
%Y A376544 Cf. A005840, A113059, A307389, A358623.
%K A376544 nonn
%O A376544 0,3
%A A376544 _Raul Penaguiao_, Sep 27 2024
%E A376544 a(10) onwards from _Andrew Howroyd_, Sep 27 2024