cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376551 This sequence satisfies: n = Sum_{k=0..n} ((-n)^(n - k)*binomial(n, k)*a(k)).

This page as a plain text file.
%I A376551 #14 Dec 06 2024 11:13:52
%S A376551 0,1,6,30,164,980,6342,44254,331144,2642472,22379210,200311034,
%T A376551 1887949164,18676191196,193352093326,2089583250990,23519349939728,
%U A376551 275137968890576,3339075981451410,41967997127203042,545452423113576820,7320310586184404676,101314914535943061206,1444341387745444125590,21185535150823665972120,319401932972290702809400
%N A376551 This sequence satisfies: n = Sum_{k=0..n} ((-n)^(n - k)*binomial(n, k)*a(k)).
%F A376551 E.g.f.: x*exp(x)*exp(x*exp(x))*(x+1).
%F A376551 a(n) = A000248(n)*n.
%F A376551 a(n) = n*Sum_{k=0..n} (binomial(n, k)*(n - k)^k).
%o A376551 (PARI)
%o A376551 a(max_n) = {my(x='x+O('x^(max_n+1))); concat([0], Vec(serlaplace(x*exp(x)*exp(x*exp(x))*(1+x))))}
%o A376551 (PARI)
%o A376551 a(n) = n*sum(k=0, n, binomial(n, k)*(n-k)^k)
%Y A376551 Cf. A000248, A185298.
%K A376551 nonn,easy
%O A376551 0,3
%A A376551 _Thomas Scheuerle_, Nov 27 2024