cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376552 Square root of the product of all sums and differences of the square roots of the first n primes.

This page as a plain text file.
%I A376552 #39 Jul 02 2025 16:54:30
%S A376552 1,24,215,44732416,445902212680990209,
%T A376552 2470738560300573839567485058051752329216,
%U A376552 194775879942444285383551347529278187374780378665463617801353369255538909241232419740031
%N A376552 Square root of the product of all sums and differences of the square roots of the first n primes.
%C A376552 a(n) is the square root of the constant term of the Swinnerton-Dyer polynomial for the set {2, 3, 5, ..., prime(n)}.  The constant terms themselves are A354913(n) for n >= 1; the nonzero coefficients of the polynomials are A153731.
%H A376552 Lucas A. Brown, <a href="/A376552/b376552.txt">Table of n, a(n) for n = 2..10</a>
%H A376552 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A354913.py">Python program</a>.
%H A376552 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Swinnerton-DyerPolynomial.html">Swinnerton-Dyer Polynomial</a>.
%H A376552 Wikipedia, <a href="https://en.wikipedia.org/wiki/Swinnerton-Dyer_polynomial">Swinnerton-Dyer polynomial</a>.
%F A376552 a(n) = sqrt(A354913(n)).
%e A376552 The Swinnerton-Dyer polynomial for n=1 is x^2 - 2, which has negative constant term, so we skip n = 1.
%e A376552 For n = 2, the Swinnerton-Dyer polynomial is (x + sqrt(2) + sqrt(3)) * (x + sqrt(2) - sqrt(3)) * (x - sqrt(2) + sqrt(3)) * (x - sqrt(2) - sqrt(3)) = x^4 - 10*x^2 + 1, so a(2) = 1.
%e A376552 For n = 3, the Swinnerton-Dyer polynomial is x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576, so a(3) = 24.
%p A376552 p:= proc(n) option remember; expand(`if`(n=0, x, mul(
%p A376552       subs(x=x+i*sqrt(ithprime(n)), p(n-1)), i=[1, -1])))
%p A376552     end:
%p A376552 a:= n-> isqrt(coeff(p(n), x, 0)):
%p A376552 seq(a(n), n=2..8);  # _Alois P. Heinz_, Nov 28 2024
%t A376552 p[n_] := p[n] = Expand[If[n == 0, x, Product[p[n - 1] /. x -> x + i*Sqrt[Prime[n]], {i, {1, -1}}]]];
%t A376552 a[n_] := Coefficient[p[n], x, 1 - Sign[n]] // Sqrt // Floor;
%t A376552 Table[a[n], {n, 2, 10}] (* _Jean-François Alcover_, Jul 02 2025, after _Alois P. Heinz_ *)
%o A376552 (Python) # See LINKS.
%Y A376552 Cf. A000040, A153731, A354913.
%K A376552 nonn
%O A376552 2,2
%A A376552 _Lucas A. Brown_, Nov 27 2024