cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A376553 Largest unitary square divisor of binomial(n, floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 1, 1, 9, 36, 1, 4, 4, 1, 9, 9, 1, 4, 1, 4, 4, 1, 1, 4, 100, 25, 100, 25, 9, 144, 9, 9, 1, 4, 25, 100, 100, 25, 9, 36, 4, 1, 4, 1, 25, 400, 225, 900, 1764, 441, 196, 49, 49, 784, 4, 1, 1, 16, 1, 16, 16, 1, 441, 441, 49, 196, 49, 196, 36, 9
Offset: 0

Views

Author

Amiram Eldar, Sep 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], p^e, 1]; a[0] = a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[Binomial[n, Floor[n/2]]]; Array[a, 100, 0]
  • PARI
    a(n) = {my(f = factor(binomial(n, n\2))); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^f[i, 2]));}

Formula

a(n) = A350388(A001405(n)).
a(n) = A376554(n)^2.

A376555 The number of unitary square divisors of binomial(n, floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 4, 2, 4, 2, 2, 4, 2, 2, 1, 2, 2, 4, 4, 2, 2, 4, 2, 1, 2, 1, 2, 4, 4, 8, 8, 4, 4, 2, 2, 4, 2, 1, 1, 2, 1, 2, 2, 1, 4, 4, 2, 4, 2, 4, 4, 2, 1, 2, 2, 1, 4, 2, 4, 8, 2, 4, 8, 4, 2, 1, 2, 4
Offset: 0

Views

Author

Amiram Eldar, Sep 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^(1 - Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[Binomial[n, Floor[n/2]]]; Array[a, 100, 0]
  • PARI
    a(n) = vecprod(apply(x -> 1 << (1 - x%2), factor(binomial(n, n\2))[, 2]));

Formula

a(n) = A056624(A001405(n)).

A376556 The number of non-unitary square divisors of binomial(n, floor(n/2)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 4, 6, 2, 2, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 6, 8, 0, 0, 0, 4, 4, 6, 2, 2, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 4, 4, 0, 0, 4, 8, 2, 3, 6, 8
Offset: 0

Views

Author

Amiram Eldar, Sep 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); a[0] = a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[Binomial[n, Floor[n/2]]]) - Times @@ f2 @@@ fct; Array[a, 60, 0]
  • PARI
    a(n) = {my(e = factor(binomial(n, n\2))[, 2]); vecprod(apply(x -> x\2 + 1, e)) - vecprod(apply(x -> 1 << (1 - x%2), e));}

Formula

a(n) = A056626(A001405(n)).

A056646 a(n) = A056622(A001405(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 2, 2, 1, 3, 3, 1, 2, 1, 2, 2, 1, 1, 2, 10, 5, 10, 5, 3, 12, 3, 3, 1, 2, 5, 10, 10, 5, 3, 6, 2, 1, 2, 1, 5, 20, 15, 30, 42, 21, 14, 7, 7, 28, 2, 1, 1, 4, 1, 4, 4, 2, 21, 21, 7, 14, 7, 14, 6, 3, 1, 2, 2, 1, 10, 5, 35, 140, 7, 14, 126, 63, 2, 1, 5, 20, 90, 45, 3, 12
Offset: 1

Views

Author

Labos Elemer, Aug 09 2000

Keywords

Comments

Previous name "Square root of largest unitary square divisor of central binomial coefficient" was incorrect. See A376554 for the correct sequence with this name. - Amiram Eldar, Sep 28 2024

Examples

			a(28) = A056622(binomial(28,14)) = A056622(40116600) = 5.
		

Crossrefs

Formula

a(n) = A000188(A001405(n))/A055229(A001405(n)) = A056056(n)/A056059(n).

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Sep 28 2024
Showing 1-4 of 4 results.