A376556 The number of non-unitary square divisors of binomial(n, floor(n/2)).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 4, 6, 2, 2, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 6, 8, 0, 0, 0, 4, 4, 6, 2, 2, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 4, 4, 0, 0, 4, 8, 2, 3, 6, 8
Offset: 0
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); a[0] = a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[Binomial[n, Floor[n/2]]]) - Times @@ f2 @@@ fct; Array[a, 60, 0]
-
PARI
a(n) = {my(e = factor(binomial(n, n\2))[, 2]); vecprod(apply(x -> x\2 + 1, e)) - vecprod(apply(x -> 1 << (1 - x%2), e));}