cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376559 Second differences of consecutive perfect powers (A001597). First differences of A053289.

This page as a plain text file.
%I A376559 #20 Oct 02 2024 14:24:36
%S A376559 1,-3,6,2,-7,3,-1,9,2,2,2,2,-17,-1,13,9,2,-7,-11,9,-5,20,2,-16,-1,21,
%T A376559 2,2,-15,-11,30,2,2,2,2,2,2,2,-22,-15,41,2,2,2,-36,3,37,2,2,2,-34,-11,
%U A376559 49,2,2,-66,45,3,-61,2,83,2,2,2,2,-63,25,42,2,-9,-89
%N A376559 Second differences of consecutive perfect powers (A001597). First differences of A053289.
%C A376559 Perfect-powers A007916 are numbers with a proper integer root.
%C A376559 Does this sequence contain zero?
%e A376559 The perfect powers (A001597) are:
%e A376559   1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
%e A376559 with first differences (A053289):
%e A376559   3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, ...
%e A376559 with first differences (A376559):
%e A376559   1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, ...
%t A376559 perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
%t A376559 Differences[Select[Range[1000],perpowQ],2]
%o A376559 (Python)
%o A376559 from sympy import mobius, integer_nthroot
%o A376559 def A376559(n):
%o A376559     def bisection(f,kmin=0,kmax=1):
%o A376559         while f(kmax) > kmax: kmax <<= 1
%o A376559         while kmax-kmin > 1:
%o A376559             kmid = kmax+kmin>>1
%o A376559             if f(kmid) <= kmid:
%o A376559                 kmax = kmid
%o A376559             else:
%o A376559                 kmin = kmid
%o A376559         return kmax
%o A376559     def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
%o A376559     a = bisection(f,n,n)
%o A376559     b = bisection(lambda x:f(x)+1,a,a)
%o A376559     return a+bisection(lambda x:f(x)+2,b,b)-(b<<1) # _Chai Wah Wu_, Oct 02 2024
%o A376559 (PARI) lista(nn) = my(v = concat (1, select(ispower, [1..nn])), w = vector(#v-1, i, v[i+1] - v[i])); vector(#w-1, i, w[i+1] - w[i]); \\ _Michel Marcus_, Oct 02 2024
%Y A376559 The version for A000002 is A376604, first differences of A054354.
%Y A376559 For first differences we have A053289, union A023055, firsts A376268, A376519.
%Y A376559 A000961 lists prime-powers inclusive, exclusive A246655.
%Y A376559 A001597 lists perfect-powers, complement A007916.
%Y A376559 A112344 counts integer partitions into perfect-powers, factorizations A294068.
%Y A376559 For perfect-powers: A053289 (first differences), A376560 (positive curvature), A376561 (negative curvature).
%Y A376559 For second differences: A036263 (prime), A073445 (composite), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).
%Y A376559 Cf. A045542, A052410, A053707, A064113, A069623, A174965, A216765, A251092, A333254, A336416, A361102.
%K A376559 sign
%O A376559 1,2
%A A376559 _Gus Wiseman_, Sep 28 2024