A376745 Numbers that are not pentagonal pyramidal numbers.
2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number
Programs
-
Mathematica
p=71;l=Floor[(2p)^(1/3)];Complement[Range[p],Table[n^2 (n + 1)/2, {n, 0, l}]] (* James C. McMahon, Oct 07 2024 *)
-
Python
from sympy import integer_nthroot def A376745(n): return n+(m:=integer_nthroot(k:=n<<1,3)[0])-(k<=m*(m-1)*(m+2))
Formula
a(n) = n+m if 2n>m(m-1)(m+2) and a(n) = n+m-1 otherwise where m = floor((2n)^(1/3)).
Comments