A376582 Triangle of generalized Stirling numbers.
1, 5, 1, 26, 7, 1, 154, 47, 9, 1, 1044, 342, 74, 11, 1, 8028, 2754, 638, 107, 13, 1, 69264, 24552, 5944, 1066, 146, 15, 1, 663696, 241128, 60216, 11274, 1650, 191, 17, 1, 6999840, 2592720, 662640, 127860, 19524, 2414, 242, 19, 1, 80627040, 30334320, 7893840, 1557660, 245004, 31594, 3382, 299, 21, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 5, 1; [2] 26, 7, 1; [3] 154, 47, 9, 1; [4] 1044, 342, 74, 11, 1; [5] 8028, 2754, 638, 107, 13, 1; [6] 69264, 24552, 5944, 1066, 146, 15, 1; [7] 663696, 241128, 60216, 11274, 1650, 191, 17, 1;
Crossrefs
Programs
-
Maple
T:=(m,n,k)->add(Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!,i=0..n-k): m:=1: seq(seq(T(m,n,k), k=0..n), n=0..10);
Formula
T(m,n,k) = Sum_{i=0..n-k} Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!, for m=1.