This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376588 #9 Oct 03 2024 11:59:56 %S A376588 3,6,7,8,9,12,13,14,15,16,17,19,21,22,25,28,29,30,31,32,33,34,35,36, %T A376588 37,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57,58,59,60,61,62,63, %U A376588 64,65,66,67,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 %N A376588 Inflection and undulation points in the sequence of non-perfect-powers (A007916). %C A376588 These are points at which the second differences (A376562) are zero. %C A376588 Non-perfect-powers (A007916) are numbers without a proper integer root. %H A376588 Gus Wiseman, <a href="/A376588/a376588.png">Inflection and undulation points in the non-perfect-powers</a>. %e A376588 The non-perfect powers (A007916) are: %e A376588 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ... %e A376588 with first differences (A375706): %e A376588 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ... %e A376588 with first differences (A376562): %e A376588 1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ... %e A376588 with zeros at (A376588): %e A376588 3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, ... %t A376588 radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1; %t A376588 Join@@Position[Differences[Select[Range[100],radQ],2],0] %Y A376588 The version for A000002 is empty. %Y A376588 For first differences we had A375706, ones A375740, complement A375714. %Y A376588 Positions of zeros in A376562, complement A376589. %Y A376588 Runs of non-perfect-powers: %Y A376588 - length: A375702 = A053289(n+1) - 1 %Y A376588 - first: A375703 (same as A216765 with 2 exceptions) %Y A376588 - last: A375704 (same as A045542 with 8 removed) %Y A376588 - sum: A375705 %Y A376588 A000961 lists prime-powers inclusive, exclusive A246655. %Y A376588 A007916 lists non-perfect-powers, complement A001597. %Y A376588 A305631 counts integer partitions into non-perfect-powers, factorizations A322452. %Y A376588 A333254 gives run-lengths of differences between consecutive primes. %Y A376588 For non-perfect-powers: A375706 (first differences), A376562 (second differences), A376589 (nonzero curvature). %Y A376588 For second differences: A064113 (prime), A376602 (composite), {} (perfect-power), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power inclusive), A376600 (non-prime-power inclusive). %Y A376588 Cf. A025475, A052410, A053707, A069623, A073445, A093555, A174965, A294068, A336416, A361102, A376599, A376590. %K A376588 nonn %O A376588 1,1 %A A376588 _Gus Wiseman_, Oct 03 2024