cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376591 Inflection and undulation points in the sequence of squarefree numbers (A005117).

This page as a plain text file.
%I A376591 #6 Oct 05 2024 09:40:57
%S A376591 1,4,9,11,12,14,16,18,21,24,27,32,33,35,40,43,48,53,55,56,58,62,65,68,
%T A376591 71,79,84,87,96,98,99,101,103,107,110,113,118,120,121,123,128,131,134,
%U A376591 137,142,144,145,147,152,153,155,158,163,165,166,172,175,179,184
%N A376591 Inflection and undulation points in the sequence of squarefree numbers (A005117).
%C A376591 These are points at which the second differences (A376590) are zero.
%H A376591 Gus Wiseman, <a href="/A376591/a376591.png">Inflection and undulation points in the squarefree numbers</a>.
%e A376591 The squarefree numbers (A005117) are:
%e A376591   1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
%e A376591 with first differences (A076259):
%e A376591   1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
%e A376591 with first differences (A376590):
%e A376591   0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
%e A376591 with zeros at (A376591):
%e A376591  1, 4, 9, 11, 12, 14, 16, 18, 21, 24, 27, 32, 33, 35, 40, 43, 48, 53, 55, 56, 58, ...
%t A376591 Join@@Position[Differences[Select[Range[100],SquareFreeQ],2],0]
%Y A376591 The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
%Y A376591 These are the zeros of A376590.
%Y A376591 The complement is A376592.
%Y A376591 A000040 lists the prime numbers, differences A001223.
%Y A376591 A005117 lists squarefree numbers, complement A013929 (differences A078147).
%Y A376591 A073576 counts integer partitions into squarefree numbers, factorizations A050320.
%Y A376591 For inflections and undulations: A064113 (prime), A376602 (composite), A376588 (non-perfect-power), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).
%Y A376591 For squarefree numbers: A076259 (first differences), A376590 (second differences), A376592 (nonzero curvature).
%Y A376591 Cf. A007674, A036263, A053797, A053806, A061398, A072284, A112925, A112926, A120992, A333254, A376593, A376655.
%K A376591 nonn
%O A376591 1,2
%A A376591 _Gus Wiseman_, Oct 04 2024