This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376591 #6 Oct 05 2024 09:40:57 %S A376591 1,4,9,11,12,14,16,18,21,24,27,32,33,35,40,43,48,53,55,56,58,62,65,68, %T A376591 71,79,84,87,96,98,99,101,103,107,110,113,118,120,121,123,128,131,134, %U A376591 137,142,144,145,147,152,153,155,158,163,165,166,172,175,179,184 %N A376591 Inflection and undulation points in the sequence of squarefree numbers (A005117). %C A376591 These are points at which the second differences (A376590) are zero. %H A376591 Gus Wiseman, <a href="/A376591/a376591.png">Inflection and undulation points in the squarefree numbers</a>. %e A376591 The squarefree numbers (A005117) are: %e A376591 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ... %e A376591 with first differences (A076259): %e A376591 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ... %e A376591 with first differences (A376590): %e A376591 0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ... %e A376591 with zeros at (A376591): %e A376591 1, 4, 9, 11, 12, 14, 16, 18, 21, 24, 27, 32, 33, 35, 40, 43, 48, 53, 55, 56, 58, ... %t A376591 Join@@Position[Differences[Select[Range[100],SquareFreeQ],2],0] %Y A376591 The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311. %Y A376591 These are the zeros of A376590. %Y A376591 The complement is A376592. %Y A376591 A000040 lists the prime numbers, differences A001223. %Y A376591 A005117 lists squarefree numbers, complement A013929 (differences A078147). %Y A376591 A073576 counts integer partitions into squarefree numbers, factorizations A050320. %Y A376591 For inflections and undulations: A064113 (prime), A376602 (composite), A376588 (non-perfect-power), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power). %Y A376591 For squarefree numbers: A076259 (first differences), A376590 (second differences), A376592 (nonzero curvature). %Y A376591 Cf. A007674, A036263, A053797, A053806, A061398, A072284, A112925, A112926, A120992, A333254, A376593, A376655. %K A376591 nonn %O A376591 1,2 %A A376591 _Gus Wiseman_, Oct 04 2024