cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376592 Points of nonzero curvature in the sequence of squarefree numbers (A005117).

This page as a plain text file.
%I A376592 #6 Oct 05 2024 09:40:53
%S A376592 2,3,5,6,7,8,10,13,15,17,19,20,22,23,25,26,28,29,30,31,34,36,37,38,39,
%T A376592 41,42,44,45,46,47,49,50,51,52,54,57,59,60,61,63,64,66,67,69,70,72,73,
%U A376592 74,75,76,77,78,80,81,82,83,85,86,88,89,90,91,92,93,94,95
%N A376592 Points of nonzero curvature in the sequence of squarefree numbers (A005117).
%C A376592 These are points at which the second differences (A376590) are nonzero.
%H A376592 Gus Wiseman, <a href="/A376592/a376592.png">Points of nonzero curvature in the squarefree numbers</a>.
%e A376592 The squarefree numbers (A005117) are:
%e A376592   1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
%e A376592 with first differences (A076259):
%e A376592   1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
%e A376592 with first differences (A376590):
%e A376592   0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
%e A376592 with nonzeros at (A376591):
%e A376592   2, 3, 5, 6, 7, 8, 10, 13, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 34, 36, ...
%t A376592 Join@@Position[Sign[Differences[Select[Range[100], SquareFreeQ],2]],1|-1]
%Y A376592 The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
%Y A376592 These are the nonzeros of A376590.
%Y A376592 The complement is A376591.
%Y A376592 A000040 lists the prime numbers, differences A001223.
%Y A376592 A005117 lists squarefree numbers, complement A013929 (differences A078147).
%Y A376592 A073576 counts integer partitions into squarefree numbers, factorizations A050320.
%Y A376592 For points of nonzero curvature: A333214 (prime), A376603 (composite), A376589 (non-perfect-power), A376595 (nonsquarefree), A376598 (prime-power), A376601 (non-prime-power).
%Y A376592 For squarefree numbers: A076259 (first differences), A376590 (second differences), A376591 (inflection and undulation points).
%Y A376592 Cf. A007674, A036263, A053797, A053806, A061398, A072284, A112925, A112926, A120992, A333254, A373198, A376655.
%K A376592 nonn
%O A376592 1,1
%A A376592 _Gus Wiseman_, Oct 04 2024