cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376594 Inflection and undulation points in the sequence of nonsquarefree numbers (A013929).

This page as a plain text file.
%I A376594 #5 Oct 05 2024 09:40:48
%S A376594 5,11,12,13,17,19,20,25,33,37,39,40,41,47,53,57,62,70,71,76,81,82,83,
%T A376594 88,92,93,96,98,103,109,113,118,123,130,131,133,137,139,146,149,154,
%U A376594 155,156,161,165,168,169,174,179,180,183,187,188,189,193,201,211,213
%N A376594 Inflection and undulation points in the sequence of nonsquarefree numbers (A013929).
%C A376594 These are points at which the second differences (A376593) are zero.
%H A376594 Gus Wiseman, <a href="/A376594/a376594.png">Inflection and undulation points in the nonsquarefree numbers</a>.
%e A376594 The nonsquarefree numbers (A013929) are:
%e A376594   4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, ...
%e A376594 with first differences (A078147):
%e A376594   4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, 3, ...
%e A376594 with first differences (A376593):
%e A376594   -3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, 3, ...
%e A376594 with zeros (A376594) at:
%e A376594   5, 11, 12, 13, 17, 19, 20, 25, 33, 37, 39, 40, 41, 47, 53, 57, 62, 70, 71, 76, ...
%t A376594 Join@@Position[Differences[Select[Range[100],!SquareFreeQ[#]&],2],0]
%Y A376594 The first differences were A078147.
%Y A376594 These are the zeros of A376593.
%Y A376594 The complement is A376595.
%Y A376594 A000040 lists the prime numbers, differences A001223.
%Y A376594 A005117 lists squarefree numbers, differences A076259.
%Y A376594 A013929 lists nonsquarefree numbers, differences A078147.
%Y A376594 A064113 lists positions of adjacent equal prime gaps.
%Y A376594 A114374 counts partitions into nonsquarefree numbers.
%Y A376594 For inflections and undulations: A064113 (prime), A376602 (composite), A376588 (non-perfect-power), A376597 (prime-power), A376600 (non-prime-power).
%Y A376594 For nonsquarefree numbers: A013929 (terms), A078147 (first differences), A376593 (second differences), A376595 (nonzero curvature).
%Y A376594 Cf. A007674, A053797, A053806, A061398, A112926, A120992, A251092, A375707, A376312, A376590, A376593.
%K A376594 nonn
%O A376594 1,1
%A A376594 _Gus Wiseman_, Oct 04 2024