This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376599 #12 Oct 03 2024 08:32:07 %S A376599 -2,0,-1,2,-1,-1,0,1,0,0,0,1,-2,0,0,1,-1,0,1,0,-1,0,1,0,-1,0,1,-1,0,0, %T A376599 0,1,0,-1,1,-1,1,-1,0,1,0,-1,0,0,0,1,0,0,-1,0,0,0,1,-1,0,0,0,0,0,1,-1, %U A376599 0,1,0,-1,0,1,0,-1,0,1,-1,0,0,0,0,0,1,-1,0 %N A376599 Second differences of consecutive non-prime-powers inclusive (A024619). First differences of A375735. %C A376599 Inclusive means 1 is a prime-power but not a non-prime-power. For the exclusive version, shift left once. %e A376599 The non-prime-powers inclusive (A024619) are: %e A376599 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, ... %e A376599 with first differences (A375735): %e A376599 4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, ... %e A376599 with first differences (A376599): %e A376599 -2, 0, -1, 2, -1, -1, 0, 1, 0, 0, 0, 1, -2, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, ... %t A376599 Differences[Select[Range[100],!(#==1||PrimePowerQ[#])&],2] %o A376599 (Python) %o A376599 from sympy import primepi, integer_nthroot %o A376599 def A376599(n): %o A376599 def iterfun(f,n=0): %o A376599 m, k = n, f(n) %o A376599 while m != k: m, k = k, f(k) %o A376599 return m %o A376599 def f(x): return int(n+1+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) %o A376599 return (a:=iterfun(f,n))-((b:=iterfun(lambda x:f(x)+1,a))<<1)+iterfun(lambda x:f(x)+2,b) # _Chai Wah Wu_, Oct 02 2024 %Y A376599 The version for A000002 is A376604, first differences of A054354. %Y A376599 For first differences we had A375735, ones A375713(n) - 1. %Y A376599 Positions of zeros are A376600, complement A376601. %Y A376599 A000961 lists prime-powers inclusive, exclusive A246655. %Y A376599 A007916 lists non-perfect-powers. %Y A376599 A057820 gives first differences of prime-powers inclusive, first appearances A376341, sorted A376340. %Y A376599 A321346/A321378 count integer partitions without prime-powers, factorizations A322452. %Y A376599 For non-prime-powers: A024619/A361102 (terms), A375735/A375708 (first differences), A376600 (inflections and undulations), A376601 (nonzero curvature). %Y A376599 For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power). %Y A376599 Cf. A025475, A053707, A064113, A093555, A174965, A251092, A333254, A376653, A376654. %K A376599 sign %O A376599 1,1 %A A376599 _Gus Wiseman_, Oct 02 2024