cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376602 Inflection and undulation points in the sequence of composite numbers (A002808).

This page as a plain text file.
%I A376602 #11 Oct 07 2024 09:08:07
%S A376602 1,3,5,7,9,11,14,15,16,18,20,21,22,25,27,29,32,33,34,37,38,39,41,43,
%T A376602 44,45,48,50,52,53,54,57,60,61,62,65,66,67,68,69,72,74,76,78,80,83,84,
%U A376602 85,86,87,88,89,90,91,92,93,96,99,100,101,103,105,106,107,108
%N A376602 Inflection and undulation points in the sequence of composite numbers (A002808).
%C A376602 These are points at which the second differences (A073445) are zero.
%H A376602 Wikipedia, <a href="https://en.wikipedia.org/wiki/Inflection_point">Inflection point</a>
%H A376602 Gus Wiseman, <a href="/A376602/a376602.png">Inflection and undulation points in the sequence of composite numbers</a>.
%e A376602 The composite numbers (A002808) are:
%e A376602   4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
%e A376602 with first differences (A073783):
%e A376602   2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
%e A376602 with first differences (A073445):
%e A376602   0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
%e A376602 with zeros at (A376602):
%e A376602   1, 3, 5, 7, 9, 11, 14, 15, 16, 18, 20, 21, 22, 25, 27, 29, 32, 33, 34, 37, 38, ...
%t A376602 Join@@Position[Differences[Select[Range[100],CompositeQ],2],0]
%Y A376602 Partitions into composite numbers are counted by A023895, factorizations A050370.
%Y A376602 For prime instead of composite we have A064113.
%Y A376602 These are the positions of zeros in A073445.
%Y A376602 For first differences we had A073783, ones A375929, complement A065890.
%Y A376602 For concavity in primes we have A258025/A258026, weak A333230/A333231.
%Y A376602 For upward concavity (instead of zero) we have A376651, downward A376652.
%Y A376602 The complement is A376603.
%Y A376602 For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376603 (nonzero curvature), A376651 (concave-up), A376652 (concave-down).
%Y A376602 For inflection and undulation points: A064113 (prime), A376588 (non-perfect-power), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).
%Y A376602 Cf. A000040, A036263, A251092, A333214, A333216, A333254.
%K A376602 nonn
%O A376602 1,2
%A A376602 _Gus Wiseman_, Oct 05 2024