cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376603 Points of nonzero curvature in the sequence of composite numbers (A002808).

This page as a plain text file.
%I A376603 #12 Oct 19 2024 08:34:37
%S A376603 2,4,6,8,10,12,13,17,19,23,24,26,28,30,31,35,36,40,42,46,47,49,51,55,
%T A376603 56,58,59,63,64,70,71,73,75,77,79,81,82,94,95,97,98,102,104,112,114,
%U A376603 118,119,123,124,126,127,131,132,136,138,146,148,150,152,162,163
%N A376603 Points of nonzero curvature in the sequence of composite numbers (A002808).
%C A376603 These are points at which the second differences (A073445) are nonzero.
%H A376603 Dominic McCarty, <a href="/A376603/b376603.txt">Table of n, a(n) for n = 1..1000</a>
%H A376603 Gus Wiseman, <a href="/A376603/a376603.png">Points of nonzero curvature in the sequence of composite numbers</a>.
%e A376603 The composite numbers (A002808) are:
%e A376603   4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
%e A376603 with first differences (A073783):
%e A376603   2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
%e A376603 with first differences (A073445):
%e A376603   0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
%e A376603 with nonzero terms at (A376603):
%e A376603   2, 4, 6, 8, 10, 12, 13, 17, 19, 23, 24, 26, 28, 30, 31, 35, 36, 40, 42, 46, 47, ...
%t A376603 Join@@Position[Sign[Differences[Select[Range[100],CompositeQ],2]],1|-1]
%Y A376603 Partitions into composite numbers are counted by A023895, factorizations A050370.
%Y A376603 These are the positions of nonzero terms in A073445.
%Y A376603 For first differences we had A073783, ones A375929, complement A065890.
%Y A376603 For prime instead of composite we have A333214.
%Y A376603 The complement is A376602.
%Y A376603 For upward concavity (instead of nonzero) we have A376651, downward A376652.
%Y A376603 For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (zeros), A376651 (concave-up), A376652 (concave-down).
%Y A376603 For nonzero curvature: A333214 (prime), A376589 (non-perfect-power), A376592 (squarefree), A376595 (nonsquarefree), A376598 (prime-power), A376601 (non-prime-power).
%Y A376603 Cf. A000961, A064113, A246655, A251092, A258025, A333254.
%K A376603 nonn
%O A376603 1,1
%A A376603 _Gus Wiseman_, Oct 05 2024