A376618 Odd binary Niven numbers (A144302) k such that k/wt(k) is also an odd binary Niven number, where wt(k) = A000120(k) is the binary weight of k.
1, 345, 405, 775, 1305, 1425, 1435, 1605, 2125, 2325, 2485, 2765, 2825, 4235, 4305, 4459, 4655, 4725, 5085, 5145, 5607, 5625, 5929, 6223, 6405, 7515, 7623, 8145, 10625, 11151, 11835, 12325, 12355, 12425, 13527, 13825, 13995, 14805, 16695, 18445, 20505, 20625, 20925
Offset: 1
Examples
345 is a term since it is odd, 345/wt(345) = 69 is an integer, and 69/wt(69) = 23 is an integer.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[k_] := Module[{w = DigitCount[k, 2, 1]}, Divisible[k, w] && Divisible[k/w, DigitCount[k/w, 2, 1]]]; Select[Range[1, 21000, 2], q]
-
PARI
is(k) = if(!(k % 2), 0, my(w = hammingweight(k)); !(k % w) && !((k/w) % hammingweight(k/w)));
Comments