cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376621 Decimal expansion of a constant related to the asymptotics of A369557 and A376580.

This page as a plain text file.
%I A376621 #19 Oct 08 2024 09:35:41
%S A376621 2,7,5,1,0,8,5,0,9,0,8,8,8,9,1,9,9,3,9,4,3,4,2,0,4,9,6,2,0,4,8,9,4,7,
%T A376621 0,3,6,4,1,8,1,7,8,6,0,2,6,3,7,1,7,5,0,9,8,2,8,1,1,3,2,5,9,3,9,3,2,9,
%U A376621 1,3,8,2,2,8,4,0,1,1,7,9,3,5,6,5,7,6,2,5,2,6,2,6,0,8,7,8,2,8,0,4,9,2,4
%N A376621 Decimal expansion of a constant related to the asymptotics of A369557 and A376580.
%F A376621 Equals limit_{n->infinity} A369557(n)^(1/sqrt(n)).
%F A376621 Equals limit_{n->infinity} A376580(n)^(1/sqrt(n)).
%F A376621 Equals limit_{n->infinity} A376542(n)^(1/sqrt(n)).
%F A376621 Equals limit_{n->infinity} A376623(n)^(1/sqrt(n)).
%F A376621 Equals exp(sqrt(3*log(r)^2/2 + 4*polylog(2, r^(1/2)) - Pi^2/3)), where r = A088559 = 0.465571231876768026656731... is the real root of the equation r*(1+r)^2 = 1. - _Vaclav Kotesovec_, Oct 07 2024
%e A376621 2.75108509088891993943420496204894703641817860263717...
%t A376621 RealDigits[E^Sqrt[3*Log[r]^2/2 + 4*PolyLog[2, r^(1/2)] - Pi^2/3] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* _Vaclav Kotesovec_, Oct 07 2024 *)
%Y A376621 Cf. A333198, A369557, A376542, A376580, A376623, A376658, A376659, A376660.
%Y A376621 Cf. A088559.
%K A376621 nonn,cons
%O A376621 1,1
%A A376621 _Vaclav Kotesovec_, Sep 30 2024