cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376624 G.f.: Sum_{k>=0} x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^(2*j-1))^2.

This page as a plain text file.
%I A376624 #9 Oct 02 2024 04:13:09
%S A376624 1,1,2,4,6,8,13,18,23,33,44,57,77,99,125,163,207,259,328,407,503,626,
%T A376624 769,938,1149,1397,1687,2044,2458,2943,3531,4213,5011,5957,7055,8334,
%U A376624 9838,11580,13594,15948,18661,21790,25425,29593,34386,39918,46250,53501,61824,71325
%N A376624 G.f.: Sum_{k>=0} x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^(2*j-1))^2.
%H A376624 Vaclav Kotesovec, <a href="/A376624/b376624.txt">Table of n, a(n) for n = 0..10000</a>
%F A376624 G.f.: Sum_{k>=0} Product_{j=1..k} x^j/(1 - x^(2*j-1))^2.
%F A376624 a(n) ~ (r^(3/4)/sqrt(8*(1 + 3*r^2))) * A376658^sqrt(n) / sqrt(n), where r = A072223 = 0.52488859865640479389948613854128391569... is the smallest real root of the equation (1 - r^2)^2 = r.
%t A376624 nmax=60; CoefficientList[Series[Sum[x^(k*(k+1)/2)/Product[1-x^(2*j-1), {j, 1, k}]^2, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
%Y A376624 Cf. A053282, A072223, A376542, A376622, A376581, A376658.
%K A376624 nonn
%O A376624 0,3
%A A376624 _Vaclav Kotesovec_, Sep 30 2024