This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376634 #15 Oct 12 2024 15:37:52 %S A376634 1,9,1,71,12,1,580,119,15,1,5104,1175,179,18,1,48860,12154,2070,251, %T A376634 21,1,509004,133938,24574,3325,335,24,1,5753736,1580508,305956,44524, %U A376634 5000,431,27,1,70290936,19978308,4028156,617624,74524,7155,539,30,1,924118272,270074016,56231712,8969148,1139292,117454,9850,659,33,1,13020978816,3894932448,832391136,136954044,18083484,1961470,176554,13145,791,36,1 %N A376634 Triangle read by rows: T(n, k) = Sum_{i=0..n-k} Stirling1(i + m, m)*binomial(n+m+1, n-k-i)*(n + m - k)!/(i + m)!, for m = 2. %C A376634 The columns of the triangle T(m,n,k) represent the coefficients of the asymptotic expansion of the higher order exponential integral E(x,m+1,k+2), for m=2, k>=0. For reference see. A163931. %H A376634 Igor Victorovich Statsenko, <a href="https://aeterna-ufa.ru/sbornik/IN-2024-10-1.pdf#page=19">Relationships of P-generalized Stirling numbers of the first kind with other generalized Stirling numbers</a>, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2024, pp. 19-22. In Russian. %e A376634 Triangle starts: %e A376634 [0] 1; %e A376634 [1] 9, 1; %e A376634 [2] 71, 12, 1; %e A376634 [3] 580, 119, 15, 1; %e A376634 [4] 5104, 1175, 179, 18, 1; %e A376634 [5] 48860, 12154, 2070, 251, 21, 1; %e A376634 [6] 509004, 133938, 24574, 3325, 335, 24, 1; %e A376634 [7] 5753736, 1580508, 305956, 44524, 5000, 431, 27, 1; %p A376634 T:=(m,n,k)->add(Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!,i=0..n-k):m:=2:seq(seq(T(m,n,k), k=0..n),n=0..10); %Y A376634 Column k: A001706 (k=0), A001712 (k=1), A001717 (k=2), A001722 (k=3), A051525 (k=4), A051546 (k=5), A051561 (k=6). %Y A376634 Cf. A094587 and A173333 for m=0, A376582 for m=1. %K A376634 nonn,tabl %O A376634 0,2 %A A376634 _Igor Victorovich Statsenko_, Sep 30 2024