This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376635 #26 Nov 01 2024 03:24:23 %S A376635 1,1,1,2,3,3,4,5,4,5,5,6,7,8,9,9,8,9,10,11,12,13,12,12,13,14,15,16,17, %T A376635 17,16,17,17,17,17,18,19,20,21,22,23,23,22,23,24,24,24,25,25,25,25,26, %U A376635 26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,35,35,36,37,37,37,37,38,38,39,39 %N A376635 a(n+1) = size of the largest subset S of 1...n such that i+j <= n implies a(i+j) = a(i)+a(j) for i and j in S. Start with a(1) = 1. %H A376635 Robert Israel, <a href="/A376635/b376635.txt">Table of n, a(n) for n = 1..600</a> %p A376635 f:= proc(n) local V,E,G,i,j; uses GraphTheory; %p A376635 V:= select(t -> 2*t > n or 2*A[t] = A[2*t], [$1..n]); %p A376635 E:= select(t -> t[1]+t[2] <= n and A[t[1]]+A[t[2]] <> A[t[1]+t[2]],{seq(seq({V[i],V[j]},i=1..j-1),j=1..nops(V))}); %p A376635 G:= Graph(V,E); %p A376635 IndependenceNumber(G) %p A376635 end proc: %p A376635 A[1]:= 1: %p A376635 for n from 1 to 99 do A[n+1]:= f(n) od: %p A376635 seq(A[i],i=1..100); # _Robert Israel_, Oct 31 2024 %o A376635 (Python) %o A376635 from itertools import combinations, count, islice %o A376635 def c(n, s, a): # test the condition for subset s %o A376635 for ii, i in enumerate(s): %o A376635 for j in s[ii:]: %o A376635 if i+j <= n: %o A376635 if a[i] + a[j] != a[i+j]: %o A376635 return False %o A376635 else: %o A376635 break %o A376635 return True %o A376635 def agen(): # generator of terms %o A376635 a, valid = [None, 1], [tuple()] %o A376635 yield 1 %o A376635 for n in count(1): %o A376635 new_valid, r = [], 0 %o A376635 for s in valid: %o A376635 if c(n, s, a): %o A376635 new_valid.extend([s, s+(n,)]) %o A376635 r = max(r, len(s)+1) %o A376635 valid = new_valid %o A376635 yield r %o A376635 a.append(r) %o A376635 print(list(islice(agen(), 30))) # _Michael S. Branicky_, Oct 01 2024 %K A376635 nonn %O A376635 1,4 %A A376635 _Bryle Morga_, Sep 30 2024 %E A376635 a(23)-a(58) from _Michael S. Branicky_, Oct 01 2024 %E A376635 More terms from _Robert Israel_, Oct 31 2024