This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376637 #19 Oct 03 2024 11:02:26 %S A376637 1,2,11,12,21,22,112,122,211,221,1121,1122,1211,2122,2211,2212,11221, %T A376637 12112,12211,12212,21121,21122,21221,22112,112212,121122,212211, %U A376637 221121,1121122,1121221,1122122,1211221,1221121,1221211,2112122,2112212,2122112,2211211 %N A376637 The word 1 belongs to the sequence, and whenever a word w belongs to the sequence, then the words consisting of 1's and 2's whose run lengths transform equals w also belong to the sequence. %C A376637 This sequence lists finite smooth words: finite words w composed of 1's and 2's without three or more consecutive equal digits, such that for any k > 0, the k-th iterate of the run lengths transform of w is also a word composed of 1's and 2's without three or more consecutive equal digits. %H A376637 Geneviève Paquin, Srĕcko Brlek, Damien Jamet, <a href="https://www.irisa.fr/JM06/Slides/SlidesPaquinBrlek.pdf">Extremal generalized smooth words</a> %H A376637 Rémy Sigrist, <a href="/A376637/b376637.txt">Table of n, a(n) for n = 1..10048</a> %H A376637 Rémy Sigrist, <a href="/A376637/a376637.png">Illustration of the first terms</a> (arrows denotes run lengths transforms) %H A376637 Rémy Sigrist, <a href="/A376637/a376637.gp.txt">PARI program</a> %H A376637 <a href="/index/K#Kolakoski">Index entries for sequences related to Kolakoski sequence</a> %e A376637 The first terms, alongside their run lengths transform, are: %e A376637 n a(n) RL(a(n)) %e A376637 -- ---- -------- %e A376637 1 1 1 %e A376637 2 2 1 %e A376637 3 11 2 %e A376637 4 12 11 %e A376637 5 21 11 %e A376637 6 22 2 %e A376637 7 112 21 %e A376637 8 122 12 %e A376637 9 211 12 %e A376637 10 221 21 %e A376637 11 1121 211 %e A376637 12 1122 22 %e A376637 13 1211 112 %e A376637 14 2122 112 %e A376637 15 2211 22 %e A376637 16 2212 211 %o A376637 (PARI) \\ See Links section. %Y A376637 Cf. A000002, A007931, A376638, A376674, A376676, A376685, A376698. %K A376637 nonn,base %O A376637 1,2 %A A376637 _Rémy Sigrist_, Sep 30 2024