This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376639 #15 Nov 15 2024 23:36:49 %S A376639 10,30,34,42,50,60,68,78,90,102,110,114,126,136,150,156,170,180,204, %T A376639 210,220,222,228,234,250,270,294,300,306,330,340,342,378,390,408,410, %U A376639 420,438,444,450,456,468,510,514,540,546,550,570,578,582,612,630,654,660,666 %N A376639 Terms of A151999 which are not a term of A293928. %C A376639 Conjecture: For each a(n) there is no a(n) = A000010(a(k)), k > n. %C A376639 Conjecture: Every term of A293928 exists in A151999. %e A376639 10 is a term because 2 divides 4 and 10 and 10 is not a term of A293928. %e A376639 666 is a term because 666 is a term of A151999 and 666 is not a term of A293928 as it has no totient inverses. %o A376639 (Sage) %o A376639 terms = [] %o A376639 for n in range(1, 10000): # Equivalent of A151999/b151999.txt %o A376639 if euler_phi(n)**2 == euler_phi(euler_phi(n) * n): terms.append(n) %o A376639 displayTerms = [] %o A376639 for n in range(0,10000): %o A376639 searchTerms = terms[n+1::] %o A376639 found = False %o A376639 for k in range(0, len(searchTerms)): %o A376639 if terms[n] == euler_phi(searchTerms[k]): %o A376639 found = True %o A376639 break %o A376639 if False == found and n < len(terms): %o A376639 displayTerms.append(terms[n]) %o A376639 for n in range(0, 55): %o A376639 print(displayTerms[n], end=', ') %Y A376639 Cf. A000010, A151999, A293928. %K A376639 nonn %O A376639 1,1 %A A376639 _Torlach Rush_, Sep 30 2024