cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376650 a(n) = Sum_{k=0..floor(n/4)} binomial(floor(k/3),n-4*k).

This page as a plain text file.
%I A376650 #10 Oct 01 2024 07:22:05
%S A376650 1,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,2,1,0,1,2,1,0,1,2,
%T A376650 1,0,1,3,3,1,1,3,3,1,1,3,3,1,1,4,6,4,2,4,6,4,2,4,6,4,2,5,10,10,6,6,10,
%U A376650 10,6,6,10,10,6,7,15,20,16,12,16,20,16,12,16,20,16,13,22,35,36
%N A376650 a(n) = Sum_{k=0..floor(n/4)} binomial(floor(k/3),n-4*k).
%H A376650 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,1,1).
%F A376650 G.f.: (1-x^12)/((1-x^4) * (1-x^12-x^13)) = (1+x^4+x^8)/(1-x^12-x^13).
%F A376650 a(n) = a(n-12) + a(n-13).
%o A376650 (PARI) a(n) = sum(k=0, n\4, binomial(k\3, n-4*k));
%o A376650 (PARI) my(N=90, x='x+O('x^N)); Vec((1+x^4+x^8)/(1-x^12-x^13))
%Y A376650 Cf. A079398, A376649.
%K A376650 nonn,easy
%O A376650 0,26
%A A376650 _Seiichi Manyama_, Oct 01 2024