cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376651 Points of upward concavity in the sequence of composite numbers (A002808).

This page as a plain text file.
%I A376651 #12 Oct 19 2024 08:34:41
%S A376651 4,8,12,17,23,26,30,35,40,46,49,55,58,63,70,73,77,81,94,97,102,112,
%T A376651 118,123,126,131,136,146,150,162,173,176,180,185,195,200,205,210,216,
%U A376651 219,229,242,245,249,262,267,276,280,285,292,297,302,305,310,317,320
%N A376651 Points of upward concavity in the sequence of composite numbers (A002808).
%C A376651 These are points at which the second differences (A073445) are positive.
%C A376651 Also positions of strict ascents in the first differences (A073783) of composite numbers (A002808).
%H A376651 Dominic McCarty, <a href="/A376651/b376651.txt">Table of n, a(n) for n = 1..1000</a>
%H A376651 Gus Wiseman, <a href="/A376651/a376651.png">Points of upward concavity in the sequence of composite numbers</a>.
%e A376651 The composite numbers are (A002808):
%e A376651   4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
%e A376651 with first differences (A073783):
%e A376651   2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
%e A376651 with first differences (A073445):
%e A376651   0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
%e A376651 with positive terms at (A376651):
%e A376651   4, 8, 12, 17, 23, 26, 30, 35, 40, 46, 49, 55, 58, 63, 70, 73, 77, 81, 94, 97, ...
%t A376651 Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],1]
%Y A376651 The version for A000002 is A022297, negative A156242.
%Y A376651 Partitions into composite numbers are counted by A023895, factorizations A050370.
%Y A376651 For first differences we had A065310 or A073783, ones A375929.
%Y A376651 These are the positions of positive terms in A073445, negative A376652.
%Y A376651 For prime instead of composite we have A258025, negative A258026.
%Y A376651 For zero second differences (instead of positive) we have A376602.
%Y A376651 For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376652 (concave-down).
%Y A376651 Cf. A000961, A057820, A064113, A065890, A251092, A333254, A376604.
%K A376651 nonn
%O A376651 1,1
%A A376651 _Gus Wiseman_, Oct 06 2024