This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376652 #13 Jan 17 2025 14:30:11 %S A376652 2,6,10,13,19,24,28,31,36,42,47,51,56,59,64,71,75,79,82,95,98,104,114, %T A376652 119,124,127,132,138,148,152,163,174,178,181,187,196,201,206,212,217, %U A376652 221,230,243,247,250,263,268,278,281,286,293,298,303,306,311,318,321 %N A376652 Points of downward concavity in the sequence of composite numbers (A002808). %C A376652 These are points at which the second differences (A073445) are negative. %C A376652 Also positions of strict descents in the first differences (A073783) of composite numbers (A002808). %H A376652 Robert Israel, <a href="/A376652/b376652.txt">Table of n, a(n) for n = 1..10000</a> %H A376652 Gus Wiseman, <a href="/A376652/a376652.png">Points of downward concavity in the sequence of composite numbers</a>. %e A376652 The composite numbers are (A002808): %e A376652 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ... %e A376652 with first differences (A073783): %e A376652 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ... %e A376652 with second differences (A073445): %e A376652 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ... %e A376652 with negative terms at (A376651): %e A376652 2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, ... %p A376652 Comps:= remove(isprime, [seq(i,i=4..1000)]): %p A376652 D1:= Comps[2..-1]-Comps[1..-2]: %p A376652 D2:= D1[2..-1]-D1[1..-2]: %p A376652 select(t -> D2[t] < 0, [$1..nops(D2)]); # _Robert Israel_, Nov 06 2024 %t A376652 Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],-1] %Y A376652 The version for A000002 is A156242, positive A022297. %Y A376652 Partitions into composite numbers are counted by A023895, factorizations A050370. %Y A376652 For first differences we had A065310 or A073783, ones A375929. %Y A376652 These are the positions of negative terms in A073445, positive A376651. %Y A376652 For prime instead of composite we have A258026, positive A258025. %Y A376652 For zero second differences instead of negative we have A376602. %Y A376652 For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376651 (concave-up). %Y A376652 Cf. A000961, A007916, A057820, A064113, A065890, A251092, A333254, A376604. %K A376652 nonn %O A376652 1,1 %A A376652 _Gus Wiseman_, Oct 06 2024