cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376652 Points of downward concavity in the sequence of composite numbers (A002808).

This page as a plain text file.
%I A376652 #13 Jan 17 2025 14:30:11
%S A376652 2,6,10,13,19,24,28,31,36,42,47,51,56,59,64,71,75,79,82,95,98,104,114,
%T A376652 119,124,127,132,138,148,152,163,174,178,181,187,196,201,206,212,217,
%U A376652 221,230,243,247,250,263,268,278,281,286,293,298,303,306,311,318,321
%N A376652 Points of downward concavity in the sequence of composite numbers (A002808).
%C A376652 These are points at which the second differences (A073445) are negative.
%C A376652 Also positions of strict descents in the first differences (A073783) of composite numbers (A002808).
%H A376652 Robert Israel, <a href="/A376652/b376652.txt">Table of n, a(n) for n = 1..10000</a>
%H A376652 Gus Wiseman, <a href="/A376652/a376652.png">Points of downward concavity in the sequence of composite numbers</a>.
%e A376652 The composite numbers are (A002808):
%e A376652   4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
%e A376652 with first differences (A073783):
%e A376652   2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
%e A376652 with second differences (A073445):
%e A376652   0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
%e A376652 with negative terms at (A376651):
%e A376652   2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, ...
%p A376652 Comps:= remove(isprime, [seq(i,i=4..1000)]):
%p A376652 D1:= Comps[2..-1]-Comps[1..-2]:
%p A376652 D2:= D1[2..-1]-D1[1..-2]:
%p A376652 select(t -> D2[t] < 0, [$1..nops(D2)]); # _Robert Israel_, Nov 06 2024
%t A376652 Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],-1]
%Y A376652 The version for A000002 is A156242, positive A022297.
%Y A376652 Partitions into composite numbers are counted by A023895, factorizations A050370.
%Y A376652 For first differences we had A065310 or A073783, ones A375929.
%Y A376652 These are the positions of negative terms in A073445, positive A376651.
%Y A376652 For prime instead of composite we have A258026, positive A258025.
%Y A376652 For zero second differences instead of negative we have A376602.
%Y A376652 For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376651 (concave-up).
%Y A376652 Cf. A000961, A007916, A057820, A064113, A065890, A251092, A333254, A376604.
%K A376652 nonn
%O A376652 1,1
%A A376652 _Gus Wiseman_, Oct 06 2024